1
|
Sun Y, Han Y. GNA15 facilitates the malignant development of thyroid carcinoma cells via the BTK-mediated MAPK signaling pathway. Histol Histopathol 2024; 39:1217-1227. [PMID: 38333922 DOI: 10.14670/hh-18-714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
G protein subunit alpha 15 (GNA15) is recognized as an oncogene for some cancers, however, its role in thyroid carcinoma (TC) is elusive and is investigated in this study. Concretely, bioinformatics was employed to analyze the GNA15 expression profile in TC. The effect of GNA15 on TC cell functions was examined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation, and Transwell assays. Expressions of extracellular regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 were determined using Western blot. The involvement of Bruton tyrosine kinase (BTK) in the mechanism of GNA15 was investigated by BTK knockdown and rescue assay. GNA15 presented an overexpression pattern in TC samples, which facilitated the viability, proliferation, migration, and invasion of TC cells; GNA15 silencing led to converse results. Ratios of p-ERK/ERK, p-JNK/JNK, and p-p38/p38 were upregulated by GNA15 overexpression. The BTK deficiency weakened the aforementioned behaviors of TC cells and blocked the MAPK signaling pathway, however, these effects were counteracted by GNA15 overexpression. Collectively, GNA15 contributes to the malignant development of TC cells by binding to BTK and thus activating the MAPK signaling pathway.
Collapse
Affiliation(s)
- Yihan Sun
- Neck Surgery Department, The 2nd School of Medicine, WMU/The 2nd Affiliated Hospital and Yuying Children's Hospital of WMU, Longwan District, Wenzhou City, Zhejiang Province, China
| | - Yifan Han
- Neck Surgery Department, The 2nd School of Medicine, WMU/The 2nd Affiliated Hospital and Yuying Children's Hospital of WMU, Longwan District, Wenzhou City, Zhejiang Province, China.
| |
Collapse
|
2
|
Kamal MM, Mia MS, Faruque MO, Rabby MG, Islam MN, Talukder MEK, Wani TA, Rahman MA, Hasan MM. In silico functional, structural and pathogenicity analysis of missense single nucleotide polymorphisms in human MCM6 gene. Sci Rep 2024; 14:11607. [PMID: 38773180 PMCID: PMC11109216 DOI: 10.1038/s41598-024-62299-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
Single nucleotide polymorphisms (SNPs) are one of the most common determinants and potential biomarkers of human disease pathogenesis. SNPs could alter amino acid residues, leading to the loss of structural and functional integrity of the encoded protein. In humans, members of the minichromosome maintenance (MCM) family play a vital role in cell proliferation and have a significant impact on tumorigenesis. Among the MCM members, the molecular mechanism of how missense SNPs of minichromosome maintenance complex component 6 (MCM6) contribute to DNA replication and tumor pathogenesis is underexplored and needs to be elucidated. Hence, a series of sequence and structure-based computational tools were utilized to determine how mutations affect the corresponding MCM6 protein. From the dbSNP database, among 15,009 SNPs in the MCM6 gene, 642 missense SNPs (4.28%), 291 synonymous SNPs (1.94%), and 12,500 intron SNPs (83.28%) were observed. Out of the 642 missense SNPs, 33 were found to be deleterious during the SIFT analysis. Among these, 11 missense SNPs (I123S, R207C, R222C, L449F, V456M, D463G, H556Y, R602H, R633W, R658C, and P815T) were found as deleterious, probably damaging, affective and disease-associated. Then, I123S, R207C, R222C, V456M, D463G, R602H, R633W, and R658C missense SNPs were found to be highly harmful. Six missense SNPs (I123S, R207C, V456M, D463G, R602H, and R633W) had the potential to destabilize the corresponding protein as predicted by DynaMut2. Interestingly, five high-risk mutations (I123S, V456M, D463G, R602H, and R633W) were distributed in two domains (PF00493 and PF14551). During molecular dynamics simulations analysis, consistent fluctuation in RMSD and RMSF values, high Rg and hydrogen bonds in mutant proteins compared to wild-type revealed that these mutations might alter the protein structure and stability of the corresponding protein. Hence, the results from the analyses guide the exploration of the mechanism by which these missense SNPs of the MCM6 gene alter the structural integrity and functional properties of the protein, which could guide the identification of ways to minimize the harmful effects of these mutations in humans.
Collapse
Affiliation(s)
- Md Mostafa Kamal
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Sohel Mia
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Omar Faruque
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Golam Rabby
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Numan Islam
- Department of Food Engineering, North Pacific International University of Bangladesh, Dhaka, Bangladesh
| | | | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - M Atikur Rahman
- Department of Biological Sciences, Alabama State University, 915 S Jackson St, Montgomery, AL, 36104, USA.
| | - Md Mahmudul Hasan
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
3
|
Chen X, Yu X, Cui Y, Du L, Zhou Q, Xiong W, Li C, Xu C, Wu H. Isoglutaminyl Cyclase Overexpression Enhances KYSE30 Cancer Cell Proliferation and Migration via the MAPK Signaling Pathway. J Proteome Res 2024; 23:1859-1870. [PMID: 38655723 DOI: 10.1021/acs.jproteome.4c00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
To understand how upregulated isoglutaminyl cyclase (isoQC) is involved in the initiation of diseases such as cancer, we developed a human KYSE30 carcinoma cell model in which isoQC was stably overexpressed. GO and KEGG analysis of the DEGs (228) and DEPs (254) respectively implicated isoQC on the proliferation invasion and metastasis of cells and suggested that isoQC might participate in the regulation of MAPK, RAS, circadian rhythm, and related pathways. At the functional level, isoQC-overexpressing KYSE30 cells showed enhanced proliferation, migration, and invasion capacity. Next, we decided to study the precise effect of isoQC overexpression on JNK, p-JNK, AKT, p-AKT, ERK, p-ERK, and PER2, as RNA levels of these proteins are significantly correlated with signal levels indicated in RNA-Seq analysis, and these candidates are the top correlated DEPs enriched in RT-qPCR analysis. We saw that only p-ERK expression was inhibited, while PER2 was increased. These phenotypes were inhibited upon exposure to PER2 inhibitor KL044, which allowed for the restoration of p-ERK levels. These data support upregulated isoQC being able to promote cancer cell proliferation and migration in vitro, likely by helping to regulate the MAPK and RAS signaling pathways, and the circadian protein PER2 might be a potential mediator.
Collapse
Affiliation(s)
- Xiaojie Chen
- School of Pharmacy, Shenzhen University Medical School, Shenzhen 518055, China
| | - Xi Yu
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518055, China
| | - Yangqing Cui
- School of Pharmacy, Shenzhen University Medical School, Shenzhen 518055, China
| | - Lang Du
- School of Pharmacy, Shenzhen University Medical School, Shenzhen 518055, China
| | - Qingqing Zhou
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518055, China
| | - Wei Xiong
- School of Pharmacy, Shenzhen University Medical School, Shenzhen 518055, China
| | - Chenyang Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen 518055, China
| | - Chenshu Xu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen 518055, China
| | - Haiqiang Wu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen 518055, China
| |
Collapse
|
4
|
Luo Z, Xu J, Xu D, Xu J, Zhou R, Deng K, Chen Z, Zou F, Yao L, Hu Y. Mechanism of immune escape mediated by receptor tyrosine kinase KIT in thyroid cancer. Immun Inflamm Dis 2023; 11:e851. [PMID: 37506147 PMCID: PMC10336654 DOI: 10.1002/iid3.851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/16/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVE Thyroid cancer (TC) is one of the fastest-growing malignant tumors. This study sought to explore the mechanism of immune escape mediated by receptor tyrosine kinase (KIT) in TC. METHODS The expression microarray of TC was acquired through the GEO database, and the difference analysis and Kyoto encyclopedia of genes and genomes pathway enrichment analysis were carried out. KIT levels in TC cell lines (K1/SW579/BCPAP) and human normal thyroid cells were detected using reverse transcription quantitative polymerase chain reaction and western blot analysis. TC cells were transfected with overexpressed (oe)-KIT and CD8+ T cells were cocultured with SW579 cells. Subsequently, cell proliferation, migration, and invasion abilities, CD8+ T cell proliferation, cytokine levels (interferon-γ [IFN-γ]/tumor necrosis factor-α [TNF-α]) were determined using colony formation assay, Transwell assays, flow cytometry, and enzyme-linked immunosorbent assay. The phosphorylation of MAPK pathway-related protein (ERK) was measured by western blot analysis. After transfection with oe-KIT, cells were treated with anisomycin (an activator of the MAPK pathway), and the protein levels of p-ERK/ERK and programmed death-ligand 1 (PD-L1) were detected. RESULTS Differentially expressed genes (N = 2472) were obtained from the GEO database. KIT was reduced in TC samples and lower in tumor cells than those in normal cells. Overexpression of KIT inhibited immune escape of TC cells. Specifically, the proliferation, migration, and invasion abilities of TC cells were lowered, the proliferation level of CD8+ T cells was elevated, and IFN-γ and TNF-α levels were increased. KIT inhibited the activation of the MAPK pathway in TC cells and downregulated PD-L1. CONCLUSION KIT suppressed immune escape of TC by blocking the activation of the MAPK pathway and downregulating PD-L1.
Collapse
Affiliation(s)
- Zhen Luo
- Department of General SurgeryMinimally Invasive Surgery Center, The First Hospital of ChangshaChangshaHunanChina
| | - Jin Xu
- Department of General SurgeryMinimally Invasive Surgery Center, The First Hospital of ChangshaChangshaHunanChina
| | - Dayong Xu
- Department of General SurgeryMinimally Invasive Surgery Center, The First Hospital of ChangshaChangshaHunanChina
| | - Jiaojiao Xu
- Department of General SurgeryMinimally Invasive Surgery Center, The First Hospital of ChangshaChangshaHunanChina
| | - Rongjun Zhou
- Department of SurgeryChangsha Hospital for Maternal and Child Health CareChangshaHunanChina
| | - Keping Deng
- Department of General SurgeryMinimally Invasive Surgery Center, The First Hospital of ChangshaChangshaHunanChina
| | - Zheng Chen
- Department of General SurgeryMinimally Invasive Surgery Center, The First Hospital of ChangshaChangshaHunanChina
| | - Fang Zou
- Department of General SurgeryMinimally Invasive Surgery Center, The First Hospital of ChangshaChangshaHunanChina
| | - Libo Yao
- Department of General SurgeryMinimally Invasive Surgery Center, The First Hospital of ChangshaChangshaHunanChina
| | - Yuqin Hu
- Department of General SurgeryMinimally Invasive Surgery Center, The First Hospital of ChangshaChangshaHunanChina
| |
Collapse
|
5
|
Shan DD, Zheng QX, Chen Z. Go-Ichi-Ni-San 2: A potential biomarker and therapeutic target in human cancers. World J Gastrointest Oncol 2022; 14:1892-1902. [PMID: 36310704 PMCID: PMC9611433 DOI: 10.4251/wjgo.v14.i10.1892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/15/2022] [Accepted: 09/06/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer incidence and mortality are increasing globally, leading to its rising status as a leading cause of death. The Go-Ichi-Ni-San (GINS) complex plays a crucial role in DNA replication and the cell cycle. The GINS complex consists of four subunits encoded by the GINS1, GINS2, GINS3, and GINS4 genes. Recent findings have shown that GINS2 expression is upregulated in many diseases, particularly tumors. For example, increased GINS2 expression has been found in cervical cancer, gastric adenocarcinoma, glioma, non-small cell lung cancer, and pancreatic cancer. It correlates with the clinicopathological characteristics of the tumors. In addition, high GINS2 expression plays a pro-carcinogenic role in tumor development by promoting tumor cell proliferation and migration, inhibiting tumor cell apoptosis, and blocking the cell cycle. This review describes the upregulation of GINS2 expression in most human tumors and the pathway of GINS2 in tumor development. GINS2 may serve as a new marker for tumor diagnosis and a new biological target for therapy.
Collapse
Affiliation(s)
- Dan-Dan Shan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Qiu-Xian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
6
|
Feng H, Zeng J, Gao L, Zhou Z, Wang L. GINS Complex Subunit 2 Facilitates Gastric Adenocarcinoma Proliferation and Indicates Poor Prognosis. TOHOKU J EXP MED 2021; 255:111-121. [PMID: 34629365 DOI: 10.1620/tjem.255.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Gastric cancer is the one of the most lethal malignancies of digestive system. Identifying molecular biomarkers is invaluable in help predicting clinical outcomes and developing targeted chemotherapies. GINS complex subunit 2 (GINS2) plays an essential role in the initiation and elongation of DNA replication. Although there have been studies revealing the prognostic significance of GINS2 in breast cancer and lung cancer, its involvement and function in gastric cancer need to be elucidated. We retrospectively enrolled a cohort of gastric adenocarcinoma patients after surgical resection (n = 123). By analyzing the mRNA and protein levels of GINS2 in tissue samples, we found that GINS2 presented a higher expression in tumor tissues than in adjacent normal stomach tissues. Besides, GINS2 level was positively correlated with tumor size and gastric adenocarcinoma tumor stage, implying its potential role as a tumor promoter. Univariate and multivariate analyses identified that patients with lower GINS2 showed a better overall survival compared to those with higher GINS2 expression. In addition, cellular and xenograft experiments confirmed the role of GINS2 in facilitating tumor proliferation both in vitro and in vivo. To our knowledge, this is the initial finding on GINS2 in promoting gastric adenocarcinoma progression. In conclusion, our study revealed a pro-oncogenic role of GINS2 in gastric cancer.
Collapse
Affiliation(s)
- Hongjun Feng
- Department of Gastroenterology, Sanya Central Hospital (Hainan Third People's Hospital)
| | - Juntao Zeng
- Department of Gastroenterology, Sanya Central Hospital (Hainan Third People's Hospital)
| | - Lei Gao
- Department of Gastroenterology, Sanya Central Hospital (Hainan Third People's Hospital)
| | - Zhenzhen Zhou
- Department of Gastroenterology, Sanya Central Hospital (Hainan Third People's Hospital)
| | - Liya Wang
- Department of Gastroenterology, Sanya Central Hospital (Hainan Third People's Hospital)
| |
Collapse
|