1
|
Tsukalov I, Sánchez-Cerrillo I, Rajas O, Avalos E, Iturricastillo G, Esparcia L, Buzón MJ, Genescà M, Scagnetti C, Popova O, Martin-Cófreces N, Calvet-Mirabent M, Marcos-Jimenez A, Martínez-Fleta P, Delgado-Arévalo C, de Los Santos I, Muñoz-Calleja C, Calzada MJ, González Álvaro I, Palacios-Calvo J, Alfranca A, Ancochea J, Sánchez-Madrid F, Martin-Gayo E. NFκB and NLRP3/NLRC4 inflammasomes regulate differentiation, activation and functional properties of monocytes in response to distinct SARS-CoV-2 proteins. Nat Commun 2024; 15:2100. [PMID: 38453949 PMCID: PMC10920883 DOI: 10.1038/s41467-024-46322-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Increased recruitment of transitional and non-classical monocytes in the lung during SARS-CoV-2 infection is associated with COVID-19 severity. However, whether specific innate sensors mediate the activation or differentiation of monocytes in response to different SARS-CoV-2 proteins remain poorly characterized. Here, we show that SARS-CoV-2 Spike 1 but not nucleoprotein induce differentiation of monocytes into transitional or non-classical subsets from both peripheral blood and COVID-19 bronchoalveolar lavage samples in a NFκB-dependent manner, but this process does not require inflammasome activation. However, NLRP3 and NLRC4 differentially regulated CD86 expression in monocytes in response to Spike 1 and Nucleoprotein, respectively. Moreover, monocytes exposed to Spike 1 induce significantly higher proportions of Th1 and Th17 CD4 + T cells. In contrast, monocytes exposed to Nucleoprotein reduce the degranulation of CD8 + T cells from severe COVID-19 patients. Our study provides insights in the differential impact of innate sensors in regulating monocytes in response to different SARS-CoV-2 proteins, which might be useful to better understand COVID-19 immunopathology and identify therapeutic targets.
Collapse
Affiliation(s)
- Ilya Tsukalov
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ildefonso Sánchez-Cerrillo
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
- CIBER Infectious Diseases (CIBERINFECC), Instituto de Salud Carlos III, Madrid, Spain
| | - Olga Rajas
- Pneumology Unit from Hospital Universitario La Princesa, Madrid, Spain
| | - Elena Avalos
- Pneumology Unit from Hospital Universitario La Princesa, Madrid, Spain
| | | | - Laura Esparcia
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - María José Buzón
- Infectious Diseases Department, Institut de Recerca Hospital Univesritari Vall d'Hebrón (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Meritxell Genescà
- Infectious Diseases Department, Institut de Recerca Hospital Univesritari Vall d'Hebrón (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Camila Scagnetti
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Olga Popova
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
| | - Noa Martin-Cófreces
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Marta Calvet-Mirabent
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Ana Marcos-Jimenez
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Pedro Martínez-Fleta
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Cristina Delgado-Arévalo
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Ignacio de Los Santos
- CIBER Infectious Diseases (CIBERINFECC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases Unit from Hospital Universitario La Princesa, Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
- CIBER Infectious Diseases (CIBERINFECC), Instituto de Salud Carlos III, Madrid, Spain
| | - María José Calzada
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Isidoro González Álvaro
- Rheumatology Department from Hospital Universitario La Princesa. Instituto de Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - José Palacios-Calvo
- Department of Pathology, Hospital Universitario Ramón y Cajal. Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Universidad de Alcalá. Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Julio Ancochea
- Pneumology Unit from Hospital Universitario La Princesa, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Enrique Martin-Gayo
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain.
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain.
- CIBER Infectious Diseases (CIBERINFECC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Ortega MA, García-Montero C, Fraile-Martinez O, Colet P, Baizhaxynova A, Mukhtarova K, Alvarez-Mon M, Kanatova K, Asúnsolo A, Sarría-Santamera A. Recapping the Features of SARS-CoV-2 and Its Main Variants: Status and Future Paths. J Pers Med 2022; 12:995. [PMID: 35743779 PMCID: PMC9225183 DOI: 10.3390/jpm12060995] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 12/14/2022] Open
Abstract
Over the two years that we have been experiencing the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) pandemic, our challenges have been the race to develop vaccines and the difficulties in fighting against new variants due to the rapid ability of the virus to evolve. In this sense, different organizations have identified and classified the different variants that have been emerging, distinguishing between variants of concern (VOC), variants of interest (VOI), or variants under monitoring (VUM). The following review aims to describe the latest updates focusing on VOC and already de-escalated variants, as well as to describe the impact these have had on the global situation. Understanding the intrinsic properties of SARS-CoV-2 and its interaction with the immune system and vaccination is essential to make out the underlying mechanisms that have led to the appearance of these variants, helping to determine the next steps for better public management of this pandemic.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Paolo Colet
- Department of Medicine, Nazarbayev University School of Medicine, Nur-Sultan 010000, Kazakhstan; (P.C.); (A.B.); (K.M.); (K.K.)
| | - Ardak Baizhaxynova
- Department of Medicine, Nazarbayev University School of Medicine, Nur-Sultan 010000, Kazakhstan; (P.C.); (A.B.); (K.M.); (K.K.)
| | - Kymbat Mukhtarova
- Department of Medicine, Nazarbayev University School of Medicine, Nur-Sultan 010000, Kazakhstan; (P.C.); (A.B.); (K.M.); (K.K.)
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - Kaznagul Kanatova
- Department of Medicine, Nazarbayev University School of Medicine, Nur-Sultan 010000, Kazakhstan; (P.C.); (A.B.); (K.M.); (K.K.)
| | - Angel Asúnsolo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Antonio Sarría-Santamera
- Department of Medicine, Nazarbayev University School of Medicine, Nur-Sultan 010000, Kazakhstan; (P.C.); (A.B.); (K.M.); (K.K.)
| |
Collapse
|
3
|
COVID-19 Infection Alters the Microbiome: Elite Athletes and Sedentary Patients Have Similar Bacterial Flora. Genes (Basel) 2021; 12:genes12101577. [PMID: 34680972 PMCID: PMC8536180 DOI: 10.3390/genes12101577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Regular exercise can upgrade the efficiency of the immune system and beneficially alter the composition of the gastro-intestinal microbiome. We tested the hypothesis that active athletes have a more diverse microbiome than sedentary subjects, which could provide better protection against COVID-19 during infection. Twenty active competing athletes (CA) (16 male and 4 females of the national first and second leagues), aged 24.15 ± 4.7 years, and 20 sedentary subjects (SED) (15 male and 5 females), aged 27.75 ± 7.5 years, who had been diagnosed as positive for COVID-19 by a PCR test, served as subjects for the study. Fecal samples collected five to eight days after diagnosis and three weeks after a negative COVID-19 PCR test were used for microbiome analysis. Except for two individuals, all subjects reported very mild and/or mild symptoms of COVID-19 and stayed at home under quarantine. Significant differences were not found in the bacterial flora of trained and untrained subjects. On the other hand, during COVID-19 infection, at the phylum level, the relative abundance of Bacteroidetes was elevated during COVID-19 compared to the level measured three weeks after a negative PCR test (p < 0.05) when all subjects were included in the statistical analysis. Since it is known that Bacteroidetes can suppress toll-like receptor 4 and ACE2-dependent signaling, thus enhancing resistance against pro-inflammatory cytokines, it is suggested that Bacteroidetes provide protection against severe COVID-19 infection. There is no difference in the microbiome bacterial flora of trained and untrained subjects during and after a mild level of COVID-19 infection.
Collapse
|
4
|
Adamyan L, Elagin V, Vechorko V, Stepanian A, Dashko A, Doroshenko D, Aznaurova Y, Sorokin M, Suntsova M, Garazha A, Buzdin A. COVID-19 - associated inhibition of energy accumulation pathways in human semen samples. ACTA ACUST UNITED AC 2021; 2:355-364. [PMID: 34377996 PMCID: PMC8339600 DOI: 10.1016/j.xfss.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/21/2021] [Accepted: 07/27/2021] [Indexed: 11/25/2022]
Abstract
Objective To investigate transcriptional alterations in human semen samples associated with COVID-19 infection. Design Retrospective observational cohort study. Setting City hospital. Patient(s) Ten patients who had recovered from mild COVID-19 infection. Eight of these patients had different sperm abnormalities that were diagnosed before infection. The control group consisted of 5 healthy donors without known abnormalities and no history of COVID-19 infection. Intervention(s) We used RNA sequencing to determine gene expression profiles in all studied biosamples. Original standard bioinformatic instruments were used to analyze activation of intracellular molecular pathways. Main Outcome Measure(s) Routine semen analysis, gene expression levels, and molecular pathway activation levels in semen samples. Result(s) We found statistically significant inhibition of genes associated with energy production pathways in the mitochondria, including genes involved in the electron transfer chain and genes involved in toll-like receptor signaling. All protein-coding genes encoded by the mitochondrial genome were significantly down-regulated in semen samples collected from patients after recovery from COVID-19. Conclusion(s) Our results may provide a molecular basis for the previously observed phenomenon of decreased sperm motility associated with COVID-19 infection. Moreover, the data will be beneficial for the optimization of preconception care for men who have recently recovered from COVID-19 infection.
Collapse
Affiliation(s)
- Leila Adamyan
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20b1 Delegatskaya St., Moscow, 127473, Russian Federation
| | - Vladimir Elagin
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20b1 Delegatskaya St., Moscow, 127473, Russian Federation.,O.M. Filatov City clinical hospital №15, 23 Veshnjakovskaja St., Moscow, 111539, Russian Federation
| | - Valeriy Vechorko
- O.M. Filatov City clinical hospital №15, 23 Veshnjakovskaja St., Moscow, 111539, Russian Federation
| | - Assia Stepanian
- Academia of Women's Health and Endoscopic Surgery, 755 Mount Vernon Hwy, Atlanta, GA, 30328, USA
| | - Anton Dashko
- O.M. Filatov City clinical hospital №15, 23 Veshnjakovskaja St., Moscow, 111539, Russian Federation
| | - Dmitriy Doroshenko
- O.M. Filatov City clinical hospital №15, 23 Veshnjakovskaja St., Moscow, 111539, Russian Federation
| | - Yana Aznaurova
- A.I. Evdokimov Moscow State University of Medicine and Dentistry, 20b1 Delegatskaya St., Moscow, 127473, Russian Federation
| | - Maxim Sorokin
- Moscow Institute of Physics and Technology (National Research University), 9 Institutskij pereulok, Dolgoprudnyj city, Moscow region, 141700, Russian Federation.,OmicsWay Corp., 340 S Lemon Ave, Walnut, CA, 91789, USA.,World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., Moscow, 119435, Russian Federation
| | - Maria Suntsova
- World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., Moscow, 119435, Russian Federation
| | | | - Anton Buzdin
- Moscow Institute of Physics and Technology (National Research University), 9 Institutskij pereulok, Dolgoprudnyj city, Moscow region, 141700, Russian Federation.,OmicsWay Corp., 340 S Lemon Ave, Walnut, CA, 91789, USA.,World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya St., Moscow, 119435, Russian Federation
| |
Collapse
|