1
|
Gu W, Zeng D, Zhang C. Discovering the effect of combination of celecoxib and sorafenib on hepatocellular carcinoma. Discov Oncol 2024; 15:321. [PMID: 39083127 PMCID: PMC11291820 DOI: 10.1007/s12672-024-01203-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/29/2024] [Indexed: 08/03/2024] Open
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a common and fatal cancer, and its molecular mechanisms are still not fully understood. This study aimed to explore the potential molecular mechanisms and immune infiltration characteristics of celecoxib combined with sorafenib in the treatment of HCC by analyzing the differentially expressed genes (DEGs) from the GSE45340 dataset in the GEO database and identifying key genes. METHODS The GSE45340 dataset was downloaded from the GEO database, and DEGs were screened using GEO2R, and visualization and statistical analysis were performed. Metascape was used to perform functional annotation and protein-protein interaction network analysis of DEGs. The immune infiltration was analyzed using the TIMER database, and the expression of key genes and their relationship with patient survival were analyzed and verified using the UALCAN database. RESULTS A total of 2181 DEGs were screened through GEO2R analysis, and heat maps were drawn for the 50 genes with the highest expression. Metascape was used for enrichment analysis, and the enrichment results of KEGG and GO and the PPI network were obtained, and 44 core genes were screened. Analysis of the TIMER database found that 12 genes were closely related to tumor immune infiltration. UALCAN analysis further verified the differential expression of these genes in HCC and was closely related to the overall survival of patients. CONCLUSIONS Through comprehensive bioinformatics analysis, this study identified a group of key genes related to the treatment of HCC with celecoxib combined with sorafenib. These genes play an important role in tumor immune infiltration and patient survival, providing important clues for further studying the molecular mechanism of HCC and developing potential therapeutic targets.
Collapse
Affiliation(s)
- Wang Gu
- Hepatological Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, 230032, Anhui Province, China
| | - Dongyun Zeng
- Clinicopathological Diagnosis and Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Baise, China
| | - Chao Zhang
- Hepatological Surgery Department, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Shushan District, Hefei City, 230032, Anhui Province, China.
| |
Collapse
|
2
|
Guimarães JCM, Petrucci G, Prada J, Pires I, Queiroga FL. Immunohistochemical Expression and Prognostic Value of COX-2 and Alpha-Smooth Muscle Actin-positive Cancer-associated Fibroblasts in Feline Mammary Cancer. In Vivo 2024; 38:598-605. [PMID: 38418156 PMCID: PMC10905453 DOI: 10.21873/invivo.13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 03/01/2024]
Abstract
BACKGROUND Cyclo-oxygenase-2 (COX-2) and cancer associated fibroblasts (CAFs) play an important role in the development and progression of tumor malignancy in humans and animals, showing that both can influence the tumor microenvironment. However, the impact of these two markers in feline mammary carcinogenesis has not yet been addressed. MATERIALS AND METHODS In the present study, the clinicopathological significance of COX-2 immunoexpression and alpha-smooth muscle actin (α-SMA)-positive cancer-associated fibroblasts (CAFs) was determined and correlated with disease-free and overall survival of 50 felines with malignant mammary tumors. RESULTS COX-2 overexpression was positively associated with mitotic index (p=0.031), degree of malignancy (p≤0.001), lymph node metastasis (p≤0.001), vascular invasion (p=0.002), disease recurrence (p=0.019) and distant metastasis (p=0.036). α-SMA-positive CAFs were associated with mitotic index (p=0.004), lymph node metastasis (p=0.027), vascular invasion (p=0.05), disease recurrence (p≤0.001) and distant metastasis (p≤0.001). Additionally, both markers were correlated with disease-free and overall survival, emerging as predictors of poor prognosis. CONCLUSION Our results indicate for the first time that the presence of two markers, COX-2 and α-SMA, is associated with carcinogenesis and worse prognosis in feline mammary cancer and that α-SMA-positive CAFs have a role in feline mammary tumorigenesis, cancer development, and clinical outcome.
Collapse
Affiliation(s)
- Jaynne C M Guimarães
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Gonçalo Petrucci
- Onevet, Veterinary Hospital of Porto, Porto, Portugal
- Animal and Veterinary Department, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Justina Prada
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- CECAV, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Isabel Pires
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- CECAV, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Felisbina L Queiroga
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal;
- CECAV, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Center for the Study of Animal Sciences, CECA-ICETA, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Gómez-Valenzuela F, Wichmann I, Suárez F, Kato S, Ossandón E, Hermoso M, Fernández EA, Cuello MA. Cyclooxygenase-2 Blockade Is Crucial to Restore Natural Killer Cell Activity before Anti-CTLA-4 Therapy against High-Grade Serous Ovarian Cancer. Cancers (Basel) 2023; 16:80. [PMID: 38201508 PMCID: PMC10778357 DOI: 10.3390/cancers16010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic inflammation influences the tumor immune microenvironment (TIME) in high-grade serous ovarian cancer (HGSOC). Specifically, cyclooxygenase-2 (COX-2) overexpression promotes cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) expression. Notably, elevated COX-2 levels in the TIME have been associated with reduced response to anti-CTLA-4 immunotherapy. However, the precise impact of COX-2, encoded by PTGS2, on the immune profile remains unknown. To address this, we performed an integrated bioinformatics analysis using data from the HGSOC cohorts (TCGA-OV, n = 368; Australian cohort AOCS, n = 80; GSE26193, n = 62; and GSE30161, n = 45). Employing Gene Set Variation Analysis (GSVA), MIXTURE and Ecotyper cell deconvolution algorithms, we concluded that COX-2 was linked to immune cell ecosystems associated with shorter survival, cell dysfunction and lower NK cell effector cytotoxicity capacity. Next, we validated these results by characterizing circulating NK cells from HGSOC patients through flow cytometry and cytotoxic assays while undergoing COX-2 and CTLA-4 blockade. The blockade of COX-2 improved the cytotoxic capacity of NK cells against HGSOC cell lines. Our findings underscore the relevance of COX-2 in shaping the TIME and suggest its potential as a prognostic indicator and therapeutic target. Increased COX-2 expression may hamper the effectivity of immunotherapies that require NK cell effector function. These results provide a foundation for experimental validation and clinical trials investigating combined therapies targeting COX-2 and CTLA-4 in HGSOC.
Collapse
Affiliation(s)
- Fernán Gómez-Valenzuela
- Department of Gynecology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (F.S.); (S.K.); (E.O.)
| | - Ignacio Wichmann
- Department of Obstetrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 833150, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 833150, Chile
- Division of Oncology, Department of Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Felipe Suárez
- Department of Gynecology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (F.S.); (S.K.); (E.O.)
| | - Sumie Kato
- Department of Gynecology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (F.S.); (S.K.); (E.O.)
| | - Enrique Ossandón
- Department of Gynecology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (F.S.); (S.K.); (E.O.)
| | - Marcela Hermoso
- Innate Immunity Laboratory, Immunology Program, Biomedical Sciences Institute, Faculty of Medicine, Universidad de Chile, Santiago 8900085, Chile;
| | - Elmer A. Fernández
- Fundación para el Progreso de la Medicina (CONICET), Córdoba X5000, Argentina;
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba X5000, Argentina
| | - Mauricio A. Cuello
- Department of Gynecology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; (F.S.); (S.K.); (E.O.)
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 833150, Chile
- Center for Cancer Prevention and Control (CECAN), Santiago 8330023, Chile
| |
Collapse
|
4
|
Mansoori B, Kiani S, Mezajin AA, Zandi P, Banaie H, Rostamzadeh D, Cho WC, Duijf PHG, Mansoori B, Baradaran B. MicroRNA-143-5p Suppresses ER-Positive Breast Cancer Development by Targeting Oncogenic HMGA2. Clin Breast Cancer 2023; 23:e480-e490.e3. [PMID: 37596147 DOI: 10.1016/j.clbc.2023.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND About 70%-80% of breast cancers (BCs) express estrogen receptors (ER-positive). MicroRNAs (miRNAs) are a group of small endogenous noncoding RNAs that play a critical regulatory role in cancer development and progression, including in BC. MiRNA deficiency promotes the development of BCs. MiR-143-5p is one of the most commonly dysregulated miRNAs in BC but its role as a tumor suppressor remains unclear. MATERIALS AND METHODS MiR-143-3p and -5p expression in breast tissue was analyzed using TCGA and StarBase databases. Expression in BC subclasses and survival analyses were conducted. Clinical samples were collected, cell cultures created, and gene expression assays performed following previous studies. Protein expression, luciferase reporter, wound healing, DAPI staining, cell cycle, colony formation, spheroid, CD44 FACS, and proliferation assays were conducted following various protocols. RESULTS Here, we find that both miR-143-3p and miR-143-5p levels are considerably lower in BC tissue compared to normal breast tissue and low miR-143 expression predicts poor prognosis in ER+ BC patients. In-depth analyses identified 3 miR-143-5p binding sites in the 3' untranslated region (UTR) of the DNA binding protein High Mobility Group AT-Hook 2 (HMGA2). Luciferase reporter assays using wild-type and mutant HMGA2 3'UTR sequences and Western blot analyses demonstrated that HMGA2 is a direct and bona fide miR-143-5p target in BC cells. In addition, we show that restoration of miR-143-5p expression suppresses metastasis-related features of ER+ BC cells, including reduced tumor cell migration, increased E-cadherin expression, and decreased vimentin and N-cadherin expression. Furthermore, miR-143-5p reduces cell proliferation, cell cycle entry, and stemness, while promoting apoptosis moderately. Finally, patient sample pathway analyses demonstrated that these mechanisms are also active in BC. CONCLUSIONS Altogether, our findings shed new light on miR-143-5p's anticancer biological functions in BC progression by directly targeting HMGA2. This suggests that restoration of miR-143-5p could be a promising new therapeutic approach for the treatment of ER+ BC.
Collapse
Affiliation(s)
- Behnaz Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan, Iran; Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shiva Kiani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | - Homadokht Banaie
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Khuzestan, Iran
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran; Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Pascal H G Duijf
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane QLD, Australia; Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane QLD, Australia; Centre for Data Science, Queensland University of Technology, Brisbane QLD, Australia; Cancer and Aging Research Program, Queensland University of Technology, Brisbane QLD, Australia; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Behzad Mansoori
- The Wistar Institute, Molecular and Cellular Oncogenesis Program, Philadelphia, PA.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan, Iran.
| |
Collapse
|
5
|
Luo Y, Hu S, Wang F, Yang J, Gong D, Xu W, Xu X, Min L. miR-137 represses migration and cell motility by targeting COX-2 in non-small cell lung cancer. Transl Cancer Res 2022; 11:3803-3813. [PMID: 36388045 PMCID: PMC9641119 DOI: 10.21037/tcr-22-2177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/28/2022] [Indexed: 09/15/2023]
Abstract
Background Lung cancer is a common malignant tumor, with, non-small cell lung cancer (NSCLC) accounting for about 80-85% of cases. This study investigated the expression of miR-137 in NSCLC tissues and cells and its effects on the migration and invasion of NSCLC cells and related mechanisms. Methods We collected the neoplastic and paracancerous tissues of NSCLC patients, detected the expression of miR-137 in NSCLC tissues and cell lines by real-time quantitative polymerase chain reaction (RT-qPCR), and analyzed the correlation between miR-137 expression and the clinicopathological features and survival of NSCLC. Following transfection with miR-137 mimic or inhibitor in NSCLC cell lines (A549 or H1299) to upregulate or downregulate the expression of miR-137, transwell assay was employed to detect the effects of miR-137 on migration or invasion. Online software was employed to predict and analyze the target gene of miR-137, and luciferase reporter gene system was adopted to validate it. The effects of miR-137 on the expressions of COX-2 and Epithelial-Mesenchymal Transition (EMT) related proteins were investigated by Western blot. Results Compared to paracancerous tissues and BEAS-2B cells, the expressions of miR-137 in NSCLC tissues, A549 and H1299 cells were dramatically down-regulated (P<0.01). After transfection with miR-137 mimic or inhibitor in A549 and H1299 cells, the miR-137 expressions were markedly up-regulated or down-regulated (P<0.01), respectively. The number of migrating or invading cells was observably decreased or increased (P<0.01) after transfected with mimic or inhibitor, respectively, while relative luciferase activity was evidently decreased in cells co-transfected with miR-137 mimic and wild type recombined vector of 3'UTR of COX-2. While the expressions of COX-2 and E-cadherin were both substantially reduced in A549 cells treated with miR-137 mimic, that of vimentin was substantially raised. The expression of miR-137 correlated with smoking history, lymph node metastasis, and TNM clinical stage, and patients with high miR-137 expression had apparent longer survival. Conclusions The expression of miR-137 was significantly down-regulated in NSCLC tissues and cells, and correlated with NSCLC progress. miR-137 suppressed the migration and invasion of NSCLC cells through regulating EMT relative proteins by targeting COX-2. miR-137 is expected to become a novel biomarker and therapeutic target of NSCLC.
Collapse
Affiliation(s)
- Yutu Luo
- Clinical Medical School of Yangzhou University, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
- Department of Pulmonary and Critical Care Medicine, Affiliated Taizhou Second People’s Hospital, Medical School of Yangzhou University, Taizhou, China
| | - Suwei Hu
- Medical Genetic Center, Affiliated Yangzhou Women and Children Hospital, Medical School of Yangzhou University, Yangzhou, China
| | - Fang Wang
- Clinical Medical School of Yangzhou University, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Junjun Yang
- Clinical Medical School of Yangzhou University, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Daohui Gong
- Clinical Medical School of Yangzhou University, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Wenjing Xu
- Clinical Medical School of Yangzhou University, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Xingxiang Xu
- Clinical Medical School of Yangzhou University, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| | - Lingfeng Min
- Clinical Medical School of Yangzhou University, Subei People’s Hospital of Jiangsu Province, Yangzhou, China
| |
Collapse
|
6
|
Vieira TC, Oliveira EA, dos Santos BJ, Souza FR, Veloso ES, Nunes CB, Del Puerto HL, Cassali GD. COX-2 expression in mammary invasive micropapillary carcinoma is associated with prognostic factors and acts as a potential therapeutic target in comparative oncology. Front Vet Sci 2022; 9:983110. [PMID: 36172611 PMCID: PMC9510711 DOI: 10.3389/fvets.2022.983110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
Pure human and canine mammary invasive micropapillary carcinoma is a rare malignant epithelial tumor accounting for 0.9 to 2% of all invasive mammary carcinomas and present a high rate of lymphatic invasion and metastasis, with unfavorable prognosis. Surgery and chemotherapy are standard treatments for almost all mammary cancer in both species, as well as hormonal and target therapies available for human patients. However, depending on the patient's clinical staging, satisfactory therapeutic results for invasive micropapillary carcinoma are a challenge due to its high capacity of invasion and metastasis. Cyclooxygenase-2 (COX-2) isoform is an important enzyme stimulated by cytokines, growth factors and oncogenes activation to synthetizes prostaglandins in inflammatory process. COX-2 overexpression is associated with angiogenesis and invasion and contributes to cancer development, disease progression, tumor recurrence and regional lymph node metastasis in human and canine mammary carcinomas. This enzyme can be targeted by non-steroidal anti-inflammatory drugs and its inhibition can reduce tumor growth and metastasis in several cancer types. Given the similarity between both species, the present study aims to elucidate the involvement of COX-2 mRNA and protein expression in canine (cIMPC) and human (hIMPC) pure invasive mammary micropapillary carcinoma, with clinicopathological and survival data. Twenty-nine cases of cIMPC and 17 cases of hIMPC were analyzed regarding histologic type, grade, age, tumor size, lymph node condition, extracapsular extension, inflammatory infiltrate and immunophenotype. When available, information on adjuvant treatment, recurrence, metastasis and overall survival were collected. The present study demonstrated COX-2 protein expression in 65.5% of cIMPC and 92.3% of hIMPC, and an association with more advanced histological grades in bitches and higher Ki67 in women. COX-2 mRNA expression was significantly higher in cIMPC than in hIMPC, and its expression was not associated with COX-2 protein expression in both species. COX-2 mRNA expression was associated with negative-ER hIMPC as well as higher Ki67. cIMPC demonstrated proportional early development, more regional metastasis, and a prevalence of negative estrogen receptor, than hIMPC. This is the first time COX-2 expression is associated with negative prognostic factors in both cIMPC and hIMPC, besides the overexpression of COX-2 protein in such unfavorable histological type, which suggests that COX-2 can act as a potential target in IMPC.
Collapse
Affiliation(s)
- Thaynan Cunha Vieira
- Laboratory of Comparative Oncology, Institute of Biological Sciences, Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Evelyn Ane Oliveira
- Laboratory of Comparative Oncology, Institute of Biological Sciences, Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bárbara Jaime dos Santos
- Laboratory of Breast Pathology, Medical School, Department of Pathological Anatomy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Rezende Souza
- Laboratory of Comparative Oncology, Institute of Biological Sciences, Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Emerson Soares Veloso
- Laboratory of Cellular Behavior, Institute of Biological Sciences, Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cristiana Buzelin Nunes
- Laboratory of Breast Pathology, Medical School, Department of Pathological Anatomy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Helen Lima Del Puerto
- Laboratory of Cellular Behavior, Institute of Biological Sciences, Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Geovanni Dantas Cassali
- Laboratory of Comparative Oncology, Institute of Biological Sciences, Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Geovanni Dantas Cassali
| |
Collapse
|
7
|
Durmus S, Atahan E, Avci Kilickiran B, Onal B, Cakatay U, Gelisgen R, Uzun H. Significance of Cyclooxgenase-2 gene polymorphism and related miRNAs in pulmonary arterial hypertension. Clin Biochem 2022; 107:33-39. [PMID: 35724768 DOI: 10.1016/j.clinbiochem.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a rare disease with a poor prognosis. The suppression of cyclooxygenase-2 (COX-2) expression has been known to impair vascular function in endothelial cells; however, the epigenetic factors that cause this are largely obscure. Our aim in this study was to examine the polymorphisms in the gene for COX-2 (PTGS2) and related miRNAs regulating its level in a single-center cohort of patients with PAH. METHOD In this study, three SNPs and miRNAs (rs5275, rs689470, rs20417, miR-26b-5p, miR-146a-5p, and miR-101-5p) in the PTGS2 were screened in PAH and controls by qPCR. In addition, the COX-2 level was determined by immunoassay to examine the effects of epigenetic factors on its expression levels. RESULTS The non-dominant genotypes of rs20417 and rs5275 were found to be related to PAH (OR = 8.56, 95% CI = 3.39-21.63, p < 0.0001 and OR = 7.82, 95% CI = 3.30-18.53, p < 0.0001, respectively). We also observed a significant increase in the miR-26b-5p and miR-146a-5p levels in PAH patients (2.18 and 2.35-fold, respectively; for both, p < 0.05). In addition, it was found that SNPs influenced the COX-2, miR-26b-5p, and miR-146a-5p levels in PAH. A negative correlation was also found between COX-2 levels and miR-26b-5p and miR-146a-5p. CONCLUSIONS As conventional drug therapies may cause lower COX-2 levels, the development of new genetic or epigenetic biomarkers is crucially important for early diagnosis and prognosis. The presence of minor alleles for rs5275 and rs689470 might also be considered as a significant risk factor for developing PAH. Furthermore, locus-specific miRNAs, such as miR-26b-5p and miR-146a-5p, seem to play a critical role in the regulation of PTGS2 expression.
Collapse
Affiliation(s)
- Sinem Durmus
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ersan Atahan
- Department of Chest Diseases, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Burcak Avci Kilickiran
- Department of Cardiology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Burak Onal
- Department of Medical Pharmacology, Medical Faculty, Biruni University, Istanbul, Turkey
| | - Ufuk Cakatay
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Remise Gelisgen
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hafize Uzun
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey; Department of Medical Biochemistry, Faculty of Medicine, İstanbul Atlas University, Istanbul, Turkey.
| |
Collapse
|
8
|
Zhang Y, Long J, Ren J, Huang X, Zhong P, Wang B. Potential Molecular Biomarkers of Vestibular Schwannoma Growth: Progress and Prospects. Front Oncol 2021; 11:731441. [PMID: 34646772 PMCID: PMC8503266 DOI: 10.3389/fonc.2021.731441] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/06/2021] [Indexed: 12/25/2022] Open
Abstract
Vestibular schwannomas (VSs, also known as acoustic neuromas) are relatively rare benign brain tumors stem from the Schwann cells of the eighth cranial nerve. Tumor growth is the paramount factor for neurosurgeons to decide whether to choose aggressive treatment approach or careful follow-up with regular magnetic resonance imaging (MRI), as surgery and radiation can introduce significant trauma and affect neurological function, while tumor enlargement during long-term follow-up will compress the adjacent nerves and tissues, causing progressive hearing loss, tinnitus and vertigo. Recently, with the deepening research of VS biology, some proteins that regulate merlin conformation changes, inflammatory cytokines, miRNAs, tissue proteins and cerebrospinal fluid (CSF) components have been proposed to be closely related to tumor volume increase. In this review, we discuss advances in the study of biomarkers that associated with VS growth, providing a reference for exploring the growth course of VS and determining the optimal treatment strategy for each patient.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianfei Long
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Junwei Ren
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiang Huang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Zhong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Bin Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
MicroRNA and cyclooxygenase-2 in breast cancer. Clin Chim Acta 2021; 522:36-44. [PMID: 34389281 DOI: 10.1016/j.cca.2021.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 12/24/2022]
Abstract
Cancer remains a major public health problem worldwide and the latest statistics show that breast cancer (BC) is among the most frequent in women. MicroRNAs (miRNAs; miRs) and cyclooxygenase-2 (COX-2) are new diagnostic and therapeutic biomarkers for monitoring BC. COX-2 is a prominent tumor-associated inflammatory factor highly expressed in human tumor cells, including BC. Expression of COX-2 contributes to tumor growth, metastasis and recurrence. MiRs are a group of short (~22 nucleotides), noncoding regulatory RNAs that downregulate gene expression post-transcriptionally and play vital roles in regulating cancer development and progression. Interestingly, there are a group of miRNAs differentially expressed in breast tumor tissue. Understanding the pathway linking miRNAs to COX-2 can provide novel insight for suppressing COX-2 expression via gene silencing thereby leading to the development of selective miRNA inhibitors. Further research can also reveal key intermediate players and their potential as therapeutic targets. Given the association between different miRNAs and COX-2 expression in BC, this review presents a comprehensive overview of the current literature concerning how miRNAs and COX-2 signaling interact in BC progression.
Collapse
|