1
|
Popek-Marciniec S, Styk W, Chocholska S, Szudy-Szczyrek A, Sidor K, Swiderska-Kolacz G, Hus M, Czerwik-Marcinkowska J, Zmorzynski S. Associations of ANGPT2 expression and its variants (rs1868554 and rs7825407) with multiple myeloma risk and outcome. Front Oncol 2025; 15:1468373. [PMID: 40115011 PMCID: PMC11922703 DOI: 10.3389/fonc.2025.1468373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
The growth of blood vessels from the existing vasculature has a significant impact on the course of multiple myeloma (MM). The ANGPT2 (angiopoietin-2) protein is encoded by the ANGPT2 gene and plays an important role in angiogenesis. The expression of proangiogenic proteins is influenced not only by microenvironmental factors but also by genetic changes. We analyzed two variants/polymorphisms of the ANGPT2 gene, rs1868554 (T>A) and rs7825407 (G>C). Both are located in the intron sequence and can affect the final mRNA sequence by modifying splicing. Purpose Therefore, we assessed the impact of selected variants on ANGPT2 gene expression at the mRNA and protein levels. Additionally, we evaluated the associations of the analyzed genetic changes with the clinical and laboratory parameters of the disease and the response to bortezomib/thalidomide-based therapies. We hypothesize that variants and expression of the ANGPT2 gene may be associated with a greater risk of MM development and may also affect the response to treatment in MM patients. Patients and methods Genomic DNA extracted from 103 newly diagnosed MM patients and 120 healthy blood donors was used to analyze ANGPT2 variants (via automated DNA sequencing). RNA was subjected to real-time PCR to determine ANGPT2 expression at the mRNA level. The concentration of angiopoietin-2 (in MM sera) was determined by ELISA. Results The results of our study showed that individuals with the AA genotype of rs1868554 and the CC genotype of rs7825407 had a greater risk of developing MM (OR=6.12, p=0.02 and OR=6.01, p=0.02, respectively). The ANGPT2 gene variants did not affect ANGPT2 expression at the mRNA level. However, ANGPT2 expression was positively correlated with CRP (Spearman's rho 0.26, p<0.05) and negatively correlated with LDH (Spearman's rho -0.25, p<0.05) in MM patients. Conclusion Our results showed that ANGPT2 expression at the mRNA level correlates with CRP, a negative prognostic factor in MM. The ANGPT2 protein is a proangiogenic factor, and its concentration is significantly greater in MM patients than in healthy individuals, which was also confirmed in our research. Therefore, this protein with VEGF and HB-EGF, should be considered in the future as a markers of angiogenesis in MM.
Collapse
Affiliation(s)
| | - Wojciech Styk
- Academic Laboratory of Psychological Tests, Medical University, Lublin, Poland
| | - Sylwia Chocholska
- Chair and Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Aneta Szudy-Szczyrek
- Chair and Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Katarzyna Sidor
- Academic Laboratory of Psychological Tests, Medical University, Lublin, Poland
| | | | - Marek Hus
- Chair and Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | | | | |
Collapse
|
2
|
Petracci E, Pasini L, Urbini M, Felip E, Stella F, Davoli F, Salvi M, Beau-Faller M, Tebaldi M, Azzali I, Canale M, Solli P, Lai G, Amat R, Carbonell C, Falcoz PE, Martinez-Marti A, Pencreach E, Delmonte A, Crinò L, Ulivi P. Circulating cell-free and extracellular vesicles-derived microRNA as prognostic biomarkers in patients with early-stage NSCLC: results from RESTING study. J Exp Clin Cancer Res 2024; 43:241. [PMID: 39169404 PMCID: PMC11340091 DOI: 10.1186/s13046-024-03156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Factors to accurately stratify patients with early-stage non-small cell lung cancer (NSCLC) in different prognostic groups are still needed. This study aims to investigate 1) the prognostic potential of circulating cell-free (CF) and extracellular vesicles (EVs)-derived microRNA (miRNAs), and 2) their added value with respect to known prognostic factors (PFs). METHODS The RESTING study is a multicentre prospective observational cohort study on resected stage IA-IIIA patients with NSCLC. The primary end-point was disease-free survival (DFS), and the main analyses were carried out separately for CF- and EV-miRNAs. CF- and EV-miRNAs were isolated from plasma, and miRNA-specific libraries were prepared and sequenced. To reach the study aims, three statistical models were specified: one using the miRNA data only (Model 1); one using both miRNAs and known PFs (age, gender, and pathological stage) (Model 2), and one using the PFs alone (Model 3). Five-fold cross-validation (CV) was used to assess the predictive performance of each. Standard Cox regression and elastic net regularized Cox regression were used. RESULTS A total of 222 patients were enrolled. The median follow-up time was 26.3 (95% CI 25.4-27.6) months. From Model 1, three CF-miRNAs and 21 EV-miRNAs were associated with DFS. In Model 2, two CF-miRNAs (miR-29c-3p and miR-877-3p) and five EV-miRNAs (miR-181a-2-3p, miR-182-5p, miR-192-5p, miR-532-3p and miR-589-5p) remained associated with DFS. From pathway enrichment analysis, TGF-beta and NOTCH were the most involved pathways. CONCLUSION This study identified promising prognostic CF- and EV-miRNAs that could be used as a non-invasive, cost-effective tool to aid clinical decision-making. However, further evaluation of the obtained miRNAs in an external cohort of patients is warranted.
Collapse
Affiliation(s)
- Elisabetta Petracci
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Luigi Pasini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Milena Urbini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Enriqueta Felip
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Franco Stella
- Thoracic Surgery Department AUSL Romagna, Forlì, Italy
| | - Fabio Davoli
- Thoracic Surgery Department AUSL Romagna, Ravenna, Italy
| | - Maurizio Salvi
- Thoracic Surgery Department AUSL Romagna, Riccione, Italy
| | - Michele Beau-Faller
- Molecular Laboratory, University Hospital, Strasbourg University, Strasburg, France
| | - Michela Tebaldi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Irene Azzali
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Matteo Canale
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Piergiorgio Solli
- Unit of Thoracic Surgery and Lung Transplantation, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giulia Lai
- Unit of Thoracic Surgery and Lung Transplantation, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Ramon Amat
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Pierre-Emmanuel Falcoz
- Thoracic Surgery Department, Nouvel Hôpital Civil', University Hospital, Strasburg, France
| | | | - Erwan Pencreach
- Molecular Laboratory, University Hospital, Strasbourg University, Strasburg, France
| | - Angelo Delmonte
- Oncology Department, Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori" (IRST) IRCCS, Meldola, Italy
| | - Lucio Crinò
- Oncology Department, Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori" (IRST) IRCCS, Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| |
Collapse
|
3
|
He Y, Ju Y, Lei H, Dong J, Jin N, Lu J, Chen S, Wang X. MiR-135a-5p regulates window of implantation by suppressing pinopodes development and decidualization of endometrial stromal cells. J Assist Reprod Genet 2024; 41:1645-1659. [PMID: 38512656 PMCID: PMC11224217 DOI: 10.1007/s10815-024-03088-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
PURPOSE The window of implantation (WOI) is a brief period during which the endometrium is receptive to embryo implantation. This study investigated the relationship between miR-135a-5p and endometrial receptivity. METHODS Peripheral blood was collected on the day of ovulation and the 5th day after ovulation for high-throughput sequencing from women who achieved clinical pregnancy through natural cycle frozen embryo transfer. RT-qPCR assessed miR-135a-5p expression in the endometrium tissue or cells during the mouse implantation window or decidualization. Scanning electron microscopy was utilized to observe pinopode morphology and quantity in mice overexpressing miR-135a-5p during the WOI. Human endometrial stromal cells (HESC) and artificial induction of mouse uterine decidualization were used to explore whether miR-135a-5p overexpression inhibits decidualization by regulating HOXA10 and BMPR2. Furthermore, the impact of miR-135a-5p on HESC proliferation and HTR8/SVneo invasion was explored. RESULTS A total of 54 women were enrolled in the study. bioinformatics analysis and animal models demonstrated that miR-135a-5p was significantly downregulated during the WOI, and its high expression can lead to abnormal pregnancy outcomes. Overexpression of miR-135a-5p resulted in the absence of pinopode in mouse endometrial tissue during the WOI. High miR-135a-5p levels were found to potentially inhibit endometrial tissue decidualization by downregulating HOXA10 and BMPR2 expression. Finally, CEBPD was identified as a potential regulator of miR-135a-5p, which would explain the decreased miR-135a-5p expression during the WOI. CONCLUSION MiR-135a-5p expression is significantly downregulated during the WOI. High miR-135a-5p levels suppress pinopode development and endometrial tissue decidualization through HOXA10 and BMPR2, contributing to inadequate endometrial receptivity.
Collapse
Affiliation(s)
- Yunan He
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1 Xinsi Road, Baqiao District, Xi'an, Shaanxi, China
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China
| | - Ying Ju
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1 Xinsi Road, Baqiao District, Xi'an, Shaanxi, China
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China
| | - Hui Lei
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1 Xinsi Road, Baqiao District, Xi'an, Shaanxi, China
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China
| | - Jie Dong
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1 Xinsi Road, Baqiao District, Xi'an, Shaanxi, China
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China
| | - Ni Jin
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1 Xinsi Road, Baqiao District, Xi'an, Shaanxi, China
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China
| | - Jie Lu
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1 Xinsi Road, Baqiao District, Xi'an, Shaanxi, China
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China
| | - Shuqiang Chen
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1 Xinsi Road, Baqiao District, Xi'an, Shaanxi, China.
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China.
| | - Xiaohong Wang
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, No.1 Xinsi Road, Baqiao District, Xi'an, Shaanxi, China.
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, Shaanxi, China.
| |
Collapse
|
4
|
Luo L, Xie Q, Wu Y, Li P, Qin F, Liao D, Wang K. Circular RNA CCT3 is a unique molecular marker in bladder cancer. BMC Cancer 2023; 23:977. [PMID: 37833621 PMCID: PMC10571266 DOI: 10.1186/s12885-023-11510-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023] Open
Abstract
This study surveyed circular RNA CCT3 in bladder cancer (BCa). We recruited 85 BCa patients and 40 normal controls (Normal) and collected clinical specimens for analysis. circRNA CCT3 expression was analyzed by RT-qPCR, diagnostic accuracy was calculated by ROC curves, and survival outcomes were evaluated by survival curves. CircRNA CCT3 was overexpressed or knocked down in cells, thereafter to observe the changes in cell malignant phenotypes. The downstream molecules of circRNA CCT3 were detected. Our data suggest that circRNA CCT3 was upregulated in human BCa and was associated with poor survival outcomes of BCa patients. In cell experiments, overexpressing circRNA CCT3 promoted BCa cell malignancy, whereas silencing circRNA CCT3 did the opposite. In addition, circRNA CCT3 modulated PP2A expression by miR-135a-5p. This study demonstrates that circRNA CCT3 is a diagnostic and prognostic biomarker in BCa patients and is a tumor promoter in BCa.
Collapse
Affiliation(s)
- Lin Luo
- Department of urology surgery, The First Affiliated Hospital of Shaoyang University, No. 39, Tongheng Street, Shuangqing District, Shaoyang City, Hunan Province, 422000, China
| | - Qingzhi Xie
- Department of urology surgery, The First Affiliated Hospital of Shaoyang University, No. 39, Tongheng Street, Shuangqing District, Shaoyang City, Hunan Province, 422000, China
| | - Yunchou Wu
- Department of urology surgery, The First Affiliated Hospital of Shaoyang University, No. 39, Tongheng Street, Shuangqing District, Shaoyang City, Hunan Province, 422000, China
| | - Ping Li
- Department of urology surgery, The First Affiliated Hospital of Shaoyang University, No. 39, Tongheng Street, Shuangqing District, Shaoyang City, Hunan Province, 422000, China
| | - FuQiang Qin
- Department of urology surgery, The First Affiliated Hospital of Shaoyang University, No. 39, Tongheng Street, Shuangqing District, Shaoyang City, Hunan Province, 422000, China
| | - Dunming Liao
- Department of urology surgery, The First Affiliated Hospital of Shaoyang University, No. 39, Tongheng Street, Shuangqing District, Shaoyang City, Hunan Province, 422000, China
| | - KangNing Wang
- Department of urology surgery, The First Affiliated Hospital of Shaoyang University, No. 39, Tongheng Street, Shuangqing District, Shaoyang City, Hunan Province, 422000, China.
- Department of urology surgery, Xiangya Hospital Central South University, Changsha City, Hunan Province, 410008, China.
| |
Collapse
|
5
|
Zhang KX, Ding C, Liu QH, Zhu DM. Knockdown of LINC01087 inhibits gastric cancer malignant behavior by regulating the miR-135a-5p/CAAP1 axis. Funct Integr Genomics 2023; 23:248. [PMID: 37474836 DOI: 10.1007/s10142-023-01157-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
Long noncoding RNAs play important roles in the occurrence and development of many malignant cancers. This study focuses on the effects of LINC01087 on gastric cancer and its underlying mechanism. In the present study, LINC01087 and CAAP1 were found to be upregulated, and miR-135a-5p was diminished in gastric cancer specimens and cells. Inhibition of LINC01087 resulted in cell proliferation inhibition and induced cell apoptosis through the intrinsic apoptosis signaling pathway, as evidenced by the activation of caspase-3 and caspase-9. An investigation of the signaling pathway revealed that the effects on proliferation and apoptosis following LINC01087 knockdown were mediated by suppression of CAAP1. Furthermore, application of a miR-135a-5p inhibitor or overexpression of CAAP1 could attenuate the apoptotic effect achieved by LINC01087 inhibition, confirming the involvement of miR-135a-5p/CAAP1 signaling in the occurrence of gastric cancer. In conclusion, the LINC01087/miR-135a-5p/CAAP1 axis modulates gastric cancer tumorigenesis and pathogenesis and presents new insight into gastric cancer targeted therapy.
Collapse
Affiliation(s)
- Kai-Xin Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, 215600, Jiangsu Province, China
| | - Chuang Ding
- Department of Gastrointestinal Surgery, Suqian Hospital affiliated to Xuzhou Medical University, Suqian, 223800, Jiangsu Province, China
| | - Qiu-Hua Liu
- Department of General Surgery, Zhangjiagang Hospital Affiliated to Soochow University, the First People's Hospital of Zhangjiagang, Zhangjiagang, 215600, Jiangsu Province, China
| | - Dong-Ming Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, 215600, Jiangsu Province, China.
| |
Collapse
|
6
|
Alimohammadi M, Gholinezhad Y, Mousavi V, Kahkesh S, Rezaee M, Yaghoobi A, Mafi A, Araghi M. Circular RNAs: novel actors of Wnt signaling pathway in lung cancer progression. EXCLI JOURNAL 2023; 22:645-669. [PMID: 37636026 PMCID: PMC10450211 DOI: 10.17179/excli2023-6209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/20/2023] [Indexed: 08/29/2023]
Abstract
Circular RNAs (CircRNAs) are a class of regulatory RNA transcripts, which are ubiquitously expressed in eukaryotes. CircRNA dysregulation has been shown to disrupt the interaction of the Wnt/β-catenin pathway, which regulates several biological processes involved in tumorigenesis, thereby contributing to the development and progression of cancer. Interactions of tumor-derived circRNAs with the Wnt/β-catenin signaling pathway provide both clinical diagnostic biomarkers and promising therapeutic targets. In this review, we outlined current evidence on the roles of circRNAs associated with the Wnt/β-catenin pathway in regulating lung cancer formation and development. We believe that our findings will assist in the advancement or establishment of circRNA-based lung cancer therapeutic approaches.
Collapse
Affiliation(s)
- Mina Alimohammadi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahide Mousavi
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Samaneh Kahkesh
- Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Malihe Rezaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Yaghoobi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmood Araghi
- Department of Pathology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
7
|
Zandieh MA, Farahani MH, Rajabi R, Avval ST, Karimi K, Rahmanian P, Razzazan M, Javanshir S, Mirzaei S, Paskeh MDA, Salimimoghadam S, Hushmandi K, Taheriazam A, Pandey V, Hashemi M. Epigenetic regulation of autophagy by non-coding RNAs in gastrointestinal tumors: Biological functions and therapeutic perspectives. Pharmacol Res 2023; 187:106582. [PMID: 36436707 DOI: 10.1016/j.phrs.2022.106582] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
Cancer is the manifestation of changes and mutations in genetic and epigenetic levels. Non-coding RNAs (ncRNAs) are commonly dysregulated in disease pathogenesis, and their role in cancer has been well-documented. The ncRNAs regulate various molecular pathways and mechanisms in cancer that can lead to induction/inhibition of carcinogenesis. Autophagy is a molecular "self-digestion" mechanism its function can be pro-survival or pro-death in tumor cells. The aim of the present review is to evaluate the role of ncRNAs in regulating autophagy in gastrointestinal tumors. The role of the ncRNA/autophagy axis in affecting the progression of gastric, liver, colorectal, pancreatic, esophageal, and gallbladder cancers is investigated. Both ncRNAs and autophagy mechanisms can function as oncogenic or onco-suppressor and this interaction can determine the growth, invasion, and therapy response of gastrointestinal tumors. ncRNA/autophagy axis can reduce/increase the proliferation of gastrointestinal tumors via the glycolysis mechanism. Furthermore, related molecular pathways of metastasis, such as EMT and MMPs, are affected by the ncRNA/autophagy axis. The response of gastrointestinal tumors to chemotherapy and radiotherapy can be suppressed by pro-survival autophagy, and ncRNAs are essential regulators of this mechanism. miRNAs can regulate related genes and proteins of autophagy, such as ATGs and Beclin-1. Furthermore, lncRNAs and circRNAs down-regulate miRNA expression via sponging to modulate the autophagy mechanism. Moreover, anti-cancer agents can affect the expression level of ncRNAs regulating autophagy in gastrointestinal tumors. Therefore, translating these findings into clinics can improve the prognosis of patients.
Collapse
Affiliation(s)
- Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Melika Heydari Farahani
- Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Kimia Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Salar Javanshir
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Vijay Pandey
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, Guangdong, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
8
|
Huang J, Wu X, Zhang Q, Yang L, Wan G, Zhang X, Wang Y, Zhao G. Depleted miR-125a-5p Causes Vascular Endothelial Cell Dysfunction in Deep Vein Thrombosis by Targeting Angiopoietin 2. Indian J Hematol Blood Transfus 2023; 39:116-122. [PMID: 36699421 PMCID: PMC9868214 DOI: 10.1007/s12288-022-01572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/25/2022] [Indexed: 01/28/2023] Open
Abstract
Deep vein thrombosis (DVT) is a common and fatal disease with a pathology involving endothelial dysfunction. The present research aimed to address the potential clinical significance of miR-125a-5p in DVT and its effect on the dysfunction of Human umbilical vein endothelial cells (HUVECs). Serum miR-125a-5p levels were measured using RT-qPCR in 88 patients with DVT and 76 healthy controls. ROC was plotted to evaluate the diagnostic potential of miR-125a-5p. Spearman's correlation coefficient was performed to calculate the correlation between miR-125a-5p and clinical indicators. CCK-8, Transwell, and ELISA were employed to verify the effects of cell proliferation, migration, and inflammatory and adhesion molecules. Dual-luciferase reporter assay to analyze potential target for miR-125a-5p. Serum miR-125a-5p was reduced in patients with DVT compared with healthy controls (P < 0.001). ROC showed that miR-125a-5p significantly identified patients with DVT from the healthy controls (AUC = 0.834). Furthermore, serum miR-125a-5p was negatively correlated with inflammatory factors and coagulation factors. In in vitro studies, proliferation and migration of HUVECs were inhibited by suppressed miR-125a-5p, whereas inflammation and adhesion factors were considerably promoted (P < 0.05). Moreover, miR-125-5p directly targeted the 3'UTR of angiopoietin 2 (ANGPT2) and was negatively regulated. Finally, serum ANGPT2 was elevated in patients with DVT and was negatively correlated with serum miR-125a-5p. The current research demonstrated that decreased miR-125a-5p was a novel potential diagnostic biomarker for DVT and that it may be involved in DVT progression by targeting ANGPT2 to regulate endothelial dysfunction.
Collapse
Affiliation(s)
- Jianyuan Huang
- General Surgery (Thyroid Gland/Blood Vessel), The First People’s Hospital of Neijiang, Neijiang, 641099 China
| | - Xinning Wu
- Department of Cardiovascular Medicine, People’s Hospital of Rizhao, Rizhao, 276827 China
| | - Quan Zhang
- Department of Cardiovascular Medicine, Affiliated Hospital of Gansu Medical College, No. 296, Kongtong East Road, Kongtong District, Pingliang, 744000 Gansu China
| | - Lixia Yang
- Department of Cardiovascular Medicine, Affiliated Hospital of Gansu Medical College, No. 296, Kongtong East Road, Kongtong District, Pingliang, 744000 Gansu China
| | - Guozhen Wan
- Department of Cardiovascular Medicine, Affiliated Hospital of Gansu Medical College, No. 296, Kongtong East Road, Kongtong District, Pingliang, 744000 Gansu China
| | - Xiaoqiang Zhang
- Department of Cardiovascular Medicine, Affiliated Hospital of Gansu Medical College, No. 296, Kongtong East Road, Kongtong District, Pingliang, 744000 Gansu China
| | - Ying Wang
- Department of Cardiovascular Medicine, Affiliated Hospital of Gansu Medical College, No. 296, Kongtong East Road, Kongtong District, Pingliang, 744000 Gansu China
| | - Guannan Zhao
- Department of Dermatological, Pingliang Traditional Chinese Medicine Hospital, Pingliang, 744000 Gansu China
| |
Collapse
|
9
|
Roots of Astragalus propinquus Schischkin Regulate Transmembrane Iron Transport and Ferroptosis to Improve Cerebral Ischemia-Reperfusion Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7410865. [PMID: 35958925 PMCID: PMC9363172 DOI: 10.1155/2022/7410865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
Abstract
Background The dried roots of the Astragalus propinquus Schischkin (RAP) plant, as a traditional Chinese medicine, has been widely used to treat stroke, cerebral ischemia, qi deficiency, and hypertension. Buyang Huanwu decoction is traditionally used to treat stroke in China for more than 200 years and has a significant effect on cerebral ischemia, and RAP is monarch medicine of Buyang Huanwu decoction. Therefore, this study was designed to observe the regulatory effect of RAP on transmembrane iron transporters and ferroptosis-related factors in cerebral ischemia-reperfusion injury (CIRI) in rats. Methods Middle cerebral artery occlusion (MCAO) was used to block blood flow in the blood supply area of the middle cerebral artery in seventy male SD rats to induce focal CIRI to establish a rat model of CIRI. RAP was administered to explore the regulatory effect of RAP on iron transmembrane transport under the condition of CIRI. The infarct size was measured using 2,3,5-triphenyl-tetrazolium chloride (TTC) staining, the pathological structure of brain tissue was observed by HE staining, and neuronal injury was evaluated by Nissl staining after treatment. Then, changes in the iron transporters ferritin (Fn), ferritin heavy chain (FHC), ferritin light chain (FLC), transferrin (Tf), transferrin receptor (TfR), divalent metal transporter 1 (DMT1), L-type calcium channel (LTCC), transient receptor potential canonical 6 (TRPC6), and ferroportin 1 (FPN1) were observed by immunohistochemistry staining (IHC) and Western blotting. The expression of key factors of ferroptosis, including the membrane sodium-dependent cystine/glutamate antiporter System Xc− (System Xc−) light chain subunit (XCT) and heavy chain subunit (SLC3A2), glutathione peroxidase 4 (GPX4), nuclear factor erythroid 2-related factor (NRF2), heme oxygenase-1 (HO-1), and iron-responsive element-binding protein 2 (IREB2) in the brain tissues of rats was assessed by Western blotting. RAP decreased the infarct size and neuronal injury after CIRI in rats. Similarly, RAP treatment regulated the expression of iron transporters. As such, RAP was able to reduce the expression of Fn, FHC, FLC, Tf, TfR, DMT1, and TRPC6 and increase the expression of FPN1 through a Tf/TfR-independent pathway after CIRI in rats. Conclusion RAP stimulation inhibited ferroptosis by regulating the expression of the key ferroptosis factors XCT, SLC3A2, GPX4, NRF2, HO-1, and IREB2. In conclusion, RAP regulates transmembrane iron transport and ferroptosis to improve CIRI.
Collapse
|
10
|
Gao X, Jia X, Xu M, Xiang J, Lei J, Li Y, Lu Y, Zuo S. Regulation of Gamma-Aminobutyric Acid Transaminase Expression and Its Clinical Significance in Hepatocellular Carcinoma. Front Oncol 2022; 12:879810. [PMID: 35847853 PMCID: PMC9280914 DOI: 10.3389/fonc.2022.879810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background Gamma-aminobutyric acid transaminase (ABAT) catalyzes the conversion of gamma-aminobutyric acid (GABA) into succinic semialdehyde. Although some evidence supports a key role of ABAT in the progression of hepatocellular carcinoma (HCC), no systematic analysis is available. Thus, this study aimed to investigate the possible mechanisms related to low ABAT expression and the prognostic value and potential functions of ABAT in HCC. Methods We obtained relevant datasets from the Encyclopedia of RNA Interactomes, MethSurv, cBioPortal, TISIDB and The Cancer Genome Atlas and used bioinformatic methods to analyze DNA methylation, copy number variation, gene mutation, and upstream microRNAs (miRNAs) of ABAT, exploring the potential relationship between ABAT expression and the prognosis, glycolysis, and immune infiltration in HCC. Results The results indicated that ABAT expression was lower in HCC tumor tissues than in normal tissues or adjacent tissues. Low ABAT expression was related to patient age, T stage classification, pathologic stage, histological grade, and alpha-fetoprotein level of HCC. Kaplan-Meier survival analyses indicated that low ABAT expression was correlated with poor HCC prognosis. ABAT was also verified as an independent risk factor in HCC via Cox multivariate analysis. Gene set enrichment analysis showed enrichment in various signaling pathways. Furthermore, DNA methylation, copy number variation, and gene mutation potentially induced low ABAT expression; miR-135a-5p was a potential upstream miRNA of ABAT. Additionally, ABAT expression was associated with glycolysis-related genes, infiltrated immune cells, immunoinhibitors, and immunostimulators in HCC. Conclusions Our study reveals that deficient ABAT expression is correlated with disease progression and poor prognosis in HCC because of its role in tumorigenesis and tumor immunity.
Collapse
Affiliation(s)
- Xiaoqiang Gao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaodong Jia
- Department of Liver Disease, Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Moyan Xu
- Health Care Office, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jiao Xiang
- Education Department, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jin Lei
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yinyin Li
- Department of Liver Disease, Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
- *Correspondence: Shi Zuo, ; Yinying Lu, ; Yinyin Li,
| | - Yinying Lu
- Department of Liver Disease, Fifth Medical Center of Chinese People's Liberation Army General Hospital, Beijing, China
- Center for Synthetic and Systems Biology (CSSB), Tsinghua University, Beijing, China
- Guangdong Key Laboratory of Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- *Correspondence: Shi Zuo, ; Yinying Lu, ; Yinyin Li,
| | - Shi Zuo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- *Correspondence: Shi Zuo, ; Yinying Lu, ; Yinyin Li,
| |
Collapse
|
11
|
Lu Y, Zhang X, Li X, Deng L, Wei C, Yang D, Tan X, Pan W, Pang L. MiR-135a-5p suppresses trophoblast proliferative, migratory, invasive, and angiogenic activity in the context of unexplained spontaneous abortion. Reprod Biol Endocrinol 2022; 20:82. [PMID: 35610725 PMCID: PMC9128262 DOI: 10.1186/s12958-022-00952-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/05/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Spontaneous abortions (SA) is amongst the most common complications associated with pregnancy in humans, and the underlying causes cannot be identified in roughly half of SA cases. We found miR-135a-5p to be significantly upregulated in SA-associated villus tissues, yet the function it plays in this context has yet to be clarified. This study explored the function of miR-135a-5p and its potential as a biomarker for unexplained SA. METHOD RT-qPCR was employed for appraising miR-135a-5p expression within villus tissues with its clinical diagnostic values being assessed using ROC curves. The effects of miR-135a-5p in HTR-8/SVneo cells were analyzed via wound healing, Transwell, flow cytometry, EdU, CCK-8, and tube formation assays. Moreover, protein expression was examined via Western blotting, and interactions between miR-135a-5p and PTPN1 were explored through RIP-PCR, bioinformatics analyses and luciferase reporter assays. RESULTS Relative to normal pregnancy (NP), villus tissue samples from pregnancies that ended in unexplained sporadic miscarriage (USM) or unexplained recurrent SA (URSA) exhibited miR-135a-5p upregulation. When this miRNA was overexpressed in HTR-8/SVneo cells, their migration, proliferation, and cell cycle progression were suppressed, as were their tube forming and invasive activities. miR-135a-5p over-expression also downregulated the protein level of cyclins, PTPN1, MMP2 and MMP9. In RIP-PCR assays, the Ago2 protein exhibited significant miR-135a-5p and PTPN1 mRNA enrichment, and dual-luciferase reporter assays indicated PTPN1 to be a bona fide miR-135a-5p target gene within HTR-8/SVneo cells. CONCLUSION miR-135a-5p may suppress trophoblast migratory, invasive, proliferative, and angiogenic activity via targeting PTPN1, and it may thus offer value as a biomarker for unexplained SA.
Collapse
Affiliation(s)
- Yebin Lu
- Department of Prenatal Diagnosis and Genetic Diseases, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Guangxi Medical University, Guangxi, China
| | - Xiaoli Zhang
- Guangxi Medical University, Guangxi, China
- Department of Obstetrics and Gynecology, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Xueyu Li
- Guangxi Medical University, Guangxi, China
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Guangxi, China
| | - Lingjie Deng
- Department of Prenatal Diagnosis and Genetic Diseases, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | | | - Dongmei Yang
- Department of Prenatal Diagnosis and Genetic Diseases, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Xuemei Tan
- Guangxi Medical University, Guangxi, China
| | | | - Lihong Pang
- Department of Prenatal Diagnosis and Genetic Diseases, First Affiliated Hospital of Guangxi Medical University, Guangxi, China.
| |
Collapse
|