1
|
Cui X, Wang Y, Li X, Li H, Yin R, Liu Y, Ma A, Yang S. A Positive Feedback Loop Between CXCL16 and the Inflammatory Factors IL-17A and TGF- β Promotes Large Artery Atherosclerosis by Activating the STAT3/NF- κB Pathway. Cardiovasc Ther 2025; 2025:2973633. [PMID: 40165931 PMCID: PMC11957866 DOI: 10.1155/cdr/2973633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 03/01/2025] [Indexed: 04/02/2025] Open
Abstract
CXC chemokine ligand 16 (CXCL16) expression is often observed in studies related to atherosclerosis (AS). However, the process by which CXCL16 promotes AS is still unknown. CXCL16 has the potential to be a therapeutic target for atherosclerotic disease, and we studied whether CXCL16 expression in carotid atherosclerotic plaques is correlated with plaque stability. The results revealed that the expression level of CXCL16 in unstable plaques was greater than that in stable plaques (p < 0.05). In an in vitro model, CXCL16 promoted the expression of interleukin-17A (IL-17A) and transforming growth factor-β (TGF-β) and the release of STAT3/NF-κB pathway-associated proteins by regulating the expression of IL-17A, TGF-β, and CXCL16. In conclusion, there is a positive feedback regulatory pathway between inflammatory factors and CXCL16 during the progression of carotid AS. Inflammatory factors and CXCL16 promote each other's expression and activate the STAT3/NF-κB pathway to promote carotid AS. CXCL16 is highly expressed in carotid atherosclerotic plaques, affecting plaque stability and further leading to the development of AS-related diseases such as ischaemic stroke. Thus, we hypothesise that CXCL16 is a potential therapeutic target for treating AS and AS-related diseases.
Collapse
Affiliation(s)
- Xuechen Cui
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuan Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuening Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hong Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruihua Yin
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yue Liu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Aijun Ma
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shaonan Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Nagar N, Naidu G, Panda SK, Gulati K, Singh RP, Poluri KM. Elucidating the role of chemokines in inflammaging associated atherosclerotic cardiovascular diseases. Mech Ageing Dev 2024; 220:111944. [PMID: 38782074 DOI: 10.1016/j.mad.2024.111944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Age-related inflammation or inflammaging is a critical deciding factor of physiological homeostasis during aging. Cardiovascular diseases (CVDs) are exquisitely associated with aging and inflammation and are one of the leading causes of high mortality in the elderly population. Inflammaging comprises dysregulation of crosstalk between the vascular and cardiac tissues that deteriorates the vasculature network leading to development of atherosclerosis and atherosclerotic-associated CVDs in elderly populations. Leukocyte differentiation, migration and recruitment holds a crucial position in both inflammaging and atherosclerotic CVDs through relaying the activity of an intricate network of inflammation-associated protein-protein interactions. Among these interactions, small immunoproteins such as chemokines play a major role in the progression of inflammaging and atherosclerosis. Chemokines are actively involved in lymphocyte migration and severe inflammatory response at the site of injury. They relay their functions via chemokine-G protein-coupled receptors-glycosaminoglycan signaling axis and is a principal part for the detection of age-related atherosclerosis and related CVDs. This review focuses on highlighting the detailed intricacies of the effects of chemokine-receptor interaction and chemokine oligomerization on lymphocyte recruitment and its evident role in clinical manifestations of atherosclerosis and related CVDs. Further, the role of chemokine mediated signaling for formulating next-generation therapeutics against atherosclerosis has also been discussed.
Collapse
Affiliation(s)
- Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Goutami Naidu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Santosh Kumar Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Khushboo Gulati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Ravindra Pal Singh
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Gujarat International Finance Tec-City, Gandhinagar, Gujarat 382355, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
3
|
Yuan WQ, Huang WP, Jiang YC, Xu H, Duan CS, Chen NH, Liu YJ, Fu XM. The function of astrocytes and their role in neurological diseases. Eur J Neurosci 2023; 58:3932-3961. [PMID: 37831013 DOI: 10.1111/ejn.16160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023]
Abstract
Astrocytes have countless links with neurons. Previously, astrocytes were only considered a scaffold of neurons; in fact, astrocytes perform a variety of functions, including providing support for neuronal structures and energy metabolism, offering isolation and protection and influencing the formation, function and elimination of synapses. Because of these functions, astrocytes play an critical role in central nervous system (CNS) diseases. The regulation of the secretiory factors, receptors, channels and pathways of astrocytes can effectively inhibit the occurrence and development of CNS diseases, such as neuromyelitis optica (NMO), multiple sclerosis, Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease. The expression of aquaporin 4 in AS is directly related to NMO and indirectly involved in the clearance of Aβ and tau proteins in AD. Connexin 43 has a bidirectional effect on glutamate diffusion at different stages of stroke. Interestingly, astrocytes reduce the occurrence of PD through multiple effects such as secretion of related factors, mitochondrial autophagy and aquaporin 4. Therefore, this review is focused on the structure and function of astrocytes and the correlation between astrocytes and CNS diseases and drug treatment to explore the new functions of astrocytes with the astrocytes as the target. This, in turn, would provide a reference for the development of new drugs to protect neurons and promote the recovery of nerve function.
Collapse
Affiliation(s)
- Wen-Qin Yuan
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wei-Peng Huang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Pharmacy, Minzu University of China, Beijing, China
| | - Yang-Chao Jiang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hao Xu
- College of Economics and Management, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Chong-Shen Duan
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying-Jiao Liu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiao-Mei Fu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
4
|
Gusev E, Sarapultsev A. Atherosclerosis and Inflammation: Insights from the Theory of General Pathological Processes. Int J Mol Sci 2023; 24:ijms24097910. [PMID: 37175617 PMCID: PMC10178362 DOI: 10.3390/ijms24097910] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Recent advances have greatly improved our understanding of the molecular mechanisms behind atherosclerosis pathogenesis. However, there is still a need to systematize this data from a general pathology perspective, particularly with regard to atherogenesis patterns in the context of both canonical and non-classical inflammation types. In this review, we analyze various typical phenomena and outcomes of cellular pro-inflammatory stress in atherosclerosis, as well as the role of endothelial dysfunction in local and systemic manifestations of low-grade inflammation. We also present the features of immune mechanisms in the development of productive inflammation in stable and unstable plaques, along with their similarities and differences compared to canonical inflammation. There are numerous factors that act as inducers of the inflammatory process in atherosclerosis, including vascular endothelium aging, metabolic dysfunctions, autoimmune, and in some cases, infectious damage factors. Life-critical complications of atherosclerosis, such as cardiogenic shock and severe strokes, are associated with the development of acute systemic hyperinflammation. Additionally, critical atherosclerotic ischemia of the lower extremities induces paracoagulation and the development of chronic systemic inflammation. Conversely, sepsis, other critical conditions, and severe systemic chronic diseases contribute to atherogenesis. In summary, atherosclerosis can be characterized as an independent form of inflammation, sharing similarities but also having fundamental differences from low-grade inflammation and various variants of canonical inflammation (classic vasculitis).
Collapse
Affiliation(s)
- Evgenii Gusev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080 Chelyabinsk, Russia
| |
Collapse
|
5
|
Vilela Dos Santos P, de Toledo DNM, Guimarães NS, Perucci LO, de Andrade-Neto VF, Talvani A. Upregulation of IL-33, CCL2, and CXCL16 levels in Brazilian pregnant women infected by Toxoplasma gondii. Acta Trop 2023; 243:106931. [PMID: 37086937 DOI: 10.1016/j.actatropica.2023.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/24/2023]
Abstract
Congenital toxoplasmosis can cause neurological and eye damage, behavioral alterations, or death in fetuses or babies born to Toxoplasma gondii-infected women. Several pieces of evidence suggest that socioeconomic, environmental, and inflammatory patterns linked to the maternal immune response partly drive the pathogenesis of this disease. However, immunoregulation induced by T. gondii infection during gestation is not completely understood. The aim of this study was to assess the association between T. gondii seropositivity and concentrations of plasma markers (CCL2, CXCL16, IL-17, and IL-33) in Brazilian pregnant women. Inflammatory markers were measured by immunoassays in the plasma of 131 pregnant women (13 to 46 years old). The prevalence of T. gondii infections was 45.8% (n = 60) in this population. The concentrations of CCL2, CXCL16, and IL-33 were higher in T. gondii-seropositive than in seronegative pregnant women, while the opposite was observed for IL-17 levels. In IgG+ women, a strong correlation between IL-17 and IL-33 (r = 0.7508, p = 0.0001) and a moderate correlation between CXCL16/IL-17 (r = 0.7319, p = 0.0001) and CXCL16/CCL2 (r = 0.3519, p = 0.0098) was observed. In uninfected women, a strong correlation was found between IL-17 and CXCL16 (r = 0.6779, p = 0.0001) but moderate between IL-17 and IL-33 (r = 0.4820, p = 0.0001). In summary, our data suggest that plasma upregulation of CCL2, CXCL16, and IL-33 might exert a potential protective role in the mother/fetus/parasite axis and, in addition, multiparous women are more likely to be infected with T. gondii than primiparous women.
Collapse
Affiliation(s)
- Priscilla Vilela Dos Santos
- Immunobiology Laboratory of Inflammation, Department of Biological Sciences/ ICEB, Federal University Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Health and Nutrition, Federal University Ouro Preto, Ouro Preto, MG, Brazil
| | - Débora Nonato Miranda de Toledo
- Immunobiology Laboratory of Inflammation, Department of Biological Sciences/ ICEB, Federal University Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Health and Nutrition, Federal University Ouro Preto, Ouro Preto, MG, Brazil
| | | | - Luiza Oliveira Perucci
- Immunobiology Laboratory of Inflammation, Department of Biological Sciences/ ICEB, Federal University Ouro Preto, Ouro Preto, MG, Brazil
| | - Valter Ferreira de Andrade-Neto
- Laboratory of Malaria Biology and Toxoplasmosis, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - André Talvani
- Immunobiology Laboratory of Inflammation, Department of Biological Sciences/ ICEB, Federal University Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Health and Nutrition, Federal University Ouro Preto, Ouro Preto, MG, Brazil; Graduate Program in Health Sciences, Infectology and Tropical Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
6
|
Wang X, Wen D, You C, Tao C, Ma L. Comprehensive analysis of immune cell infiltration and role of MSR1 expression in aneurysmal subarachnoid haemorrhage. Cell Prolif 2022:e13379. [PMID: 36515067 DOI: 10.1111/cpr.13379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Aneurysmal subarachnoid haemorrhage (aSAH), resulting from the rupture of intracranial aneurysms, can yield high mortality and disability. This study aimed to explore the immune infiltration of aneurysmal tissues and investigate a novel mechanism underlying aSAH. We downloaded datasets containing expression profiles of aneurysmal and normal arterial tissues from the online database. Then a comprehensive bioinformatic strategy was conducted to select the biomarkers of aneurysmal tissues. Two calculation algorithms were performed to identify the unique immune characteristics between aneurysmal tissues and normal arteries. Double immunofluorescence staining was used to investigate the role of pathway-related proteins in the inflammatory process after aSAH. Six microarray datasets were integrated, and another RNA-sequencing dataset was used as the validation dataset. Functional enrichment analysis of the differentially expressed genes indicated that immune-related processes were closely related to the progression of aSAH. We then performed immune microenvironment infiltration analysis, and the results suggested macrophages were abnormally enriched in aneurysmal tissues. Core gene MSR1 was filtered through a comprehensive bioinformatic strategy. Our analysis suggested that MSR1 might be associated with macrophage activation and migration. Our study elucidated the impact of macrophage and MSR1 on aSAH progression. These findings were helpful in gaining insight into the immune heterogeneity of aneurysmal tissues and normal arteries, and in identifying patients who might benefit from immunotherapy.
Collapse
Affiliation(s)
- Xing Wang
- Department of Neurosurgery, West China hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dingke Wen
- Department of Neurosurgery, West China hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chao You
- Department of Neurosurgery, West China hospital, Sichuan University, Chengdu, Sichuan, China.,West China Brain Research Centre, Sichuan University, Chengdu, Sichuan, China
| | - Chuanyuan Tao
- Department of Neurosurgery, West China hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Ma
- Department of Neurosurgery, West China hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Zhou Y, Shi W, Zhao D, Xiao S, Wang K, Wang J. Identification of Immune-Associated Genes in Diagnosing Aortic Valve Calcification With Metabolic Syndrome by Integrated Bioinformatics Analysis and Machine Learning. Front Immunol 2022; 13:937886. [PMID: 35865542 PMCID: PMC9295723 DOI: 10.3389/fimmu.2022.937886] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
Background Immune system dysregulation plays a critical role in aortic valve calcification (AVC) and metabolic syndrome (MS) pathogenesis. The study aimed to identify pivotal diagnostic candidate genes for AVC patients with MS. Methods We obtained three AVC and one MS dataset from the gene expression omnibus (GEO) database. Identification of differentially expressed genes (DEGs) and module gene via Limma and weighted gene co-expression network analysis (WGCNA), functional enrichment analysis, protein–protein interaction (PPI) network construction, and machine learning algorithms (least absolute shrinkage and selection operator (LASSO) regression and random forest) were used to identify candidate immune-associated hub genes for diagnosing AVC with MS. To assess the diagnostic value, the nomogram and receiver operating characteristic (ROC) curve were developed. Finally, immune cell infiltration was created to investigate immune cell dysregulation in AVC. Results The merged AVC dataset included 587 DEGs, and 1,438 module genes were screened out in MS. MS DEGs were primarily enriched in immune regulation. The intersection of DEGs for AVC and module genes for MS was 50, which were mainly enriched in the immune system as well. Following the development of the PPI network, 26 node genes were filtered, and five candidate hub genes were chosen for nomogram building and diagnostic value evaluation after machine learning. The nomogram and all five candidate hub genes had high diagnostic values (area under the curve from 0.732 to 0.982). Various dysregulated immune cells were observed as well. Conclusion Five immune-associated candidate hub genes (BEX2, SPRY2, CXCL16, ITGAL, and MORF4L2) were identified, and the nomogram was constructed for AVC with MS diagnosis. Our study could provide potential peripheral blood diagnostic candidate genes for AVC in MS patients.
Collapse
Affiliation(s)
- Yufei Zhou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wenxiang Shi
- Department of Pediatric Cardiology, Xinhua Hospital, The Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Zhao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Shengjue Xiao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Kai Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jing Wang, ; Kai Wang,
| | - Jing Wang
- Department of Geriatric Medicine, The Affiliated Jiangning Hospital With Nanjing Medical University, Nanjing, China
- *Correspondence: Jing Wang, ; Kai Wang,
| |
Collapse
|