1
|
Zhang J, He Y, Ruan Q, Bi A, Zhou J, Weng S, Ma H, Lin T, Wang H, Xu Y. The hsa_circ_0002371/hsa-miR-502-5p/ATG16L1 axis modulates the survival of intracellular Mycobacterium tuberculosis and autophagy in macrophages. Cell Signal 2024; 121:111271. [PMID: 38944259 DOI: 10.1016/j.cellsig.2024.111271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/11/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Circular RNAs (circRNAs) play a critical role in pathological mechanisms of Mycobacterium tuberculosis (Mtb) and can be used as a new biomarker for active tuberculosis (ATB) diagnosis. Therefore, we identified significantly dysregulated circRNAs in ATB patients and healthy controls (HC) and explored their molecular mechanism. We found that hsa_circ_0002371 was significantly up-regulated in PBMCs of ATB patients and Mycobacterium tuberculosis H37Rv- or Mycobacterium bovis bacillus Calmette Guerin (BCG)-infected THP-1 cells. Functional experiments demonstrated that hsa_circ_0002371 inhibited autophagy in BCG-infected THP-1 cells and promoted intracellular BCG survival rate. In terms of mechanism, hsa_circ_0002371 facilitated the expression of hsa-miR-502-5p, as shown by bioinformatics and dual-luciferase reporter gene analysis, respectively. Notably, hsa-miR-502-5p inhibited autophagy via suppressing autophagy related 16 like 1 (ATG16L1) in BCG-infected macrophages and thus promoting intracellular BCG growth. In summation, hsa_circ_0002371 increased the suppression of hsa-miR-502-5p on ATG16L1 and inhibited autophagy to promote Mtb growth in macrophages. In Conclusion, our data suggested that hsa_circ_0002371 was significantly up-regulated in the PBMCs of ATB patients compared with HC. The hsa_circ_0002371/hsa-miR-502-5p/ATG16L1 axis promoted the survival of intracellular Mtb and inhibited autophagy in macrophages. Our findings suggested hsa_circ_0002371 could act as a potential diagnostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Jinyi Zhang
- Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433, China
| | - Yumo He
- Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433, China
| | - Qiaoling Ruan
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Aixiao Bi
- Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Jingyu Zhou
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shufeng Weng
- Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433, China
| | - Huixia Ma
- Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433, China
| | - Taiyue Lin
- Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433, China
| | - Honghai Wang
- Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433, China
| | - Ying Xu
- Institute of Genetics, School of Life Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
2
|
Devara D, Choudhary Y, Kumar S. Role of MicroRNA-502-3p in Human Diseases. Pharmaceuticals (Basel) 2023; 16:ph16040532. [PMID: 37111289 PMCID: PMC10144852 DOI: 10.3390/ph16040532] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that play a major role in gene regulation in several diseases. MicroRNA-502-3p (MiR-502-3p) has been previously characterized in a variety of human diseases such as osteoporosis, diabetes, tuberculosis, cancers, and neurological disorders. Our studies recently explored the new role of miR-502-3p in regulating synapse function in Alzheimer’s disease (AD). AD is the most common cause of dementia in elderly individuals. Synapse is the initial target that is hit during AD progression. The most common causes of synapse dysfunction in AD are amyloid beta, hyperphosphorylated tau, and microglia activation. MiR-502-3p was found to be localized and overexpressed in the AD synapses. Overexpression of miR-502-3p was correlated with AD severity in terms of Braak stages. Studies have shown that miR-502-3p modulates the glutaminergic and GABAergic synapse function in AD. The current study’s emphasis is to discuss the in-depth roles of miR-502-3p in human diseases and AD and the future possibilities concerning miR-502-3p as a therapeutic for AD treatment.
Collapse
Affiliation(s)
- Davin Devara
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | - Yashmit Choudhary
- Maxine L. Silva Health Magnet High School, 121 Val Verde St., El Paso, TX 79905, USA
| | - Subodh Kumar
- Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| |
Collapse
|
3
|
Ma X, Wang F, Zhen L, Cai Q. Hsa_circ_0001204 modulates inflammatory response of macrophages infected by Mycobacterium tuberculosis via TLR4/NF-κB signalling pathway. Clin Exp Pharmacol Physiol 2023; 50:132-139. [PMID: 36048566 DOI: 10.1111/1440-1681.13716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 01/05/2023]
Abstract
Circular RNAs (circRNAs) play a vital role in the regulation of Mycobacterium tuberculosis (M.tb) by macrophages. In this project, the potential role of hsa_circ_0001204 in M.tb-infected macrophages is explored. Hsa_circ_0001204 was determined in the patients with tuberculosis (TB) and M.tb-infected macrophages. Its effect on the survival of M.tb and the apoptosis and inflammation of M.tb-infected macrophages was evaluated. Toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) signalling was detected by western blotting and immunofluorescence. TB patients and M.tb-infected THP-1 cells showed the significant downregulation of hsa_circ_0001204. Upregulating hsa_circ_0001204 reduced M.tb survival and suppressed the apoptosis and inflammatory response of THP-1 cells. The TLR4/NF-κB signalling pathway could be inhibited by hsa_circ_0001204 overexpression, which was activated by M.tb-infection. Hsa_circ_0001204 confers protective effects in M.tb-infected THP-1 cells, at least partly via the inhibition of TLR4/NF-κB signalling pathway.
Collapse
Affiliation(s)
- Xiaoqing Ma
- Department of Tuberculosis, Hangzhou Chest Hospital Affiliated to Zhejiang University Medical College, Hangzhou, China
| | - Fang Wang
- The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Libo Zhen
- Department of Tuberculosis, Hangzhou Chest Hospital Affiliated to Zhejiang University Medical College, Hangzhou, China
| | - Qingshan Cai
- Department of Tuberculosis, Hangzhou Chest Hospital Affiliated to Zhejiang University Medical College, Hangzhou, China
| |
Collapse
|
4
|
Liang S, Ma J, Gong H, Shao J, Li J, Zhan Y, Wang Z, Wang C, Li W. Immune regulation and emerging roles of noncoding RNAs in Mycobacterium tuberculosis infection. Front Immunol 2022; 13:987018. [PMID: 36311754 PMCID: PMC9608867 DOI: 10.3389/fimmu.2022.987018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/29/2022] [Indexed: 05/10/2024] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, engenders an onerous burden on public hygiene. Congenital and adaptive immunity in the human body act as robust defenses against the pathogens. However, in coevolution with humans, this microbe has gained multiple lines of mechanisms to circumvent the immune response to sustain its intracellular persistence and long-term survival inside a host. Moreover, emerging evidence has revealed that this stealthy bacterium can alter the expression of demic noncoding RNAs (ncRNAs), leading to dysregulated biological processes subsequently, which may be the rationale behind the pathogenesis of tuberculosis. Meanwhile, the differential accumulation in clinical samples endows them with the capacity to be indicators in the time of tuberculosis suffering. In this article, we reviewed the nearest insights into the impact of ncRNAs during Mycobacterium tuberculosis infection as realized via immune response modulation and their potential as biomarkers for the diagnosis, drug resistance identification, treatment evaluation, and adverse drug reaction prediction of tuberculosis, aiming to inspire novel and precise therapy development to combat this pathogen in the future.
Collapse
Affiliation(s)
- Shufan Liang
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiechao Ma
- Artificial Intelligence (AI) Lab, Deepwise Healthcare, Beijing, China
| | - Hanlin Gong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Shao
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jingwei Li
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Yuejuan Zhan
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Zhoufeng Wang
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|