1
|
Chen Y, Xu Z, Ma Y, Liu T, Tian X, Zhu Z, Zheng W, Wang Y, Zheng R, Xing J, Wang W, Sun F. Deep brain stimulation combined with morroniside promotes neural plasticity and motor functional recovery after ischemic stroke. Front Pharmacol 2024; 15:1457309. [PMID: 39697542 PMCID: PMC11652210 DOI: 10.3389/fphar.2024.1457309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
Background and Objective Until now, there has been an unmet need for treatments promoting chronic-phase post-stroke functional recovery. We previously found that morroniside promoted endogenous neurogenesis in ischemic stroke, but its therapeutic window was limited to the first 48 h. Here, we aimed to explore whether deep brain stimulation (DBS) combined with morroniside could enhance neurogenesis in rats subjected to focal ischemic stroke and contributes to functional recovery. Methods Beginning 2 weeks after the endothelin-1-induced stroke, rats were administered DBS of lateral cerebellar nucleus consecutively for 14 days, followed by morroniside for 7 consecutive days post-stimulation. Behavioral tests were used for assessing motor function. Local field potentials were recorded to evaluate neuronal excitability. Nissl staining was used to assess infarct volume. Immunofluorescence staining and Western blotting were carried out to uncover the stroke recovery mechanisms of DBS combined with morroniside treatment. Results The results showed that this combined treatment improved behavioral outcomes, enhanced cortical local field potentials, and diminished infarct volumes at 35 days post-stroke. Moreover, it notably amplified neurogenic responses post-stroke, evidenced by the proliferation of BrdU/SOX2 and BrdU/DCX in the subventricular zone, and their subsequent differentiation into BrdU/NeuN and BrdU/VgulT1 in the ischemic penumbra. Moreover, the combined treatment also elevated the amount of BrdU/Olig2 and the level of axonal sprouting-related proteins in the perilesional cortex. Conclusion Our results demonstrated that the combined treatment extended the neurorestorative efficacy of morroniside, reduced infarct size, enhanced neuronal excitability and accelerated sensorimotor function recovery. This therapeutic approach may emerge as a potential clinical intervention for chronic ischemic stroke.
Collapse
Affiliation(s)
- Yanxi Chen
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Zhidong Xu
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yifu Ma
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Tingting Liu
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Xin Tian
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Zixin Zhu
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Wenrong Zheng
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Yufeng Wang
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Ruifang Zheng
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Jianguo Xing
- Key Laboratory of Uighur Medicine of Xinjiang Uygur Autonomous Region, Xinjiang Institute of Materia Medica, Urumqi, China
| | - Wen Wang
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Fangling Sun
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| |
Collapse
|
2
|
Lu M, Dai S, Dai G, Wang T, Zhang S, Wei L, Luo M, Zhou X, Wang H, Xu D. Dexamethasone induces developmental axon damage in the offspring hippocampus by activating miR-210-3p/miR-362-5p to target the aberrant expression of Sonic Hedgehog. Biochem Pharmacol 2024; 226:116330. [PMID: 38815627 DOI: 10.1016/j.bcp.2024.116330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Given the extensive application of dexamethasone in both clinical settings and the livestock industry, human exposure to this drug can occur through various sources and pathways. Prior research has indicated that prenatal exposure to dexamethasone (PDE) heightens the risk of cognitive and emotional disorders in offspring. Axonal development impairment is a frequent pathological underpinning for neuronal dysfunction in these disorders, yet it remains unclear if it plays a role in the neural damage induced by PDE in the offspring. Through RNA-seq and bioinformatics analysis, we found that various signaling pathways related to nervous system development, including axonal development, were altered in the hippocampus of PDE offspring. Among them, the Sonic Hedgehog (SHH) signaling pathway was the most significantly altered and crucial for axonal development. By using miRNA-seq and targeting miRNAs and glucocorticoid receptor (GR) expression, we identified miR-210-3p and miR-362-5p, which can target and suppress SHH expression. Their abnormal high expression was associated with GR activation in PDE fetal rats. Further testing of PDE offspring rats and infant peripheral blood samples exposed to dexamethasone in utero showed that SHH expression was significantly decreased in peripheral blood mononuclear cells (PBMCs) and was positively correlated with SHH expression in the hippocampus and the expression of the axonal development marker growth-associated protein-43. In summary, PDE-induced hippocampal GR-miR-210-3p/miR-362-5p-SHH signaling axis changes lead to axonal developmental damage. SHH expression in PBMCs may reflect axonal developmental damage in PDE offspring and could serve as a warning marker for fetal axonal developmental damage.
Collapse
Affiliation(s)
- Mengxi Lu
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Shiyun Dai
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; National Health Commission Key Laboratory of Clinical Research for Cardiovascular Medications, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gaole Dai
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Tingting Wang
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Shuai Zhang
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Liyi Wei
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Mingcui Luo
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xinli Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Dan Xu
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
3
|
Mansouri Z, Khodagholi F, Zaringhalam J, Abbaszadeh F, Ghasemi R, Maghsoudi N. Intranasal CEPO-FC prevents attention deficits in streptozotocin-induced rat model of Alzheimer's disease: Focus on synaptic plasticity-related factors. EXCLI JOURNAL 2024; 23:491-508. [PMID: 38741725 PMCID: PMC11089095 DOI: 10.17179/excli2023-6818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Alzheimer's disease remains an issue of great controversy due to its pathology. It is characterized by cognitive impairments and neuropsychiatric symptoms. The FDA approved medications for this disease, can only mitigate the symptoms. One reason for the lack of effective medications is the inaccessibility of the brain which is encompassed by the blood-brain barrier, making intranasal (IN) route of administration potentially advantageous. Male Wistar rats underwent stereotaxic surgery to induce an Alzheimer's disease model via intracerebroventricular (ICV) streptozotocin injection, and Carbamylated Erythropoietin-Fc (CEPO-FC), a derivative of Erythropoietin without its harmful characteristics, was administered intranasally for ten consecutive days. Cognition performance for memory and attention was assessed using the Novel Object Recognition Test and the Object-Based Attention Test respectively. Depression like behavior was evaluated using the Forced Swim Test. Western blotting was done on the extracted hippocampus to quantify STIM proteins. Calbindin, PSD-95, Neuroplastin, Synaptophysin and GAP-43 genes were assessed by Realtime PCR. Behavioral tests demonstrated that IN CEPO-FC could halt cognition deficits and molecular investigations showed that, STIM proteins were decreased in Alzheimer's model, and increased after IN CEPO-FC treatment. Calbindin and PSD-95 were downregulated in our disease model and upregulated when treated with IN CEPO-FC. While Neuroplastin, and GAP-43 expressions remained unchanged. This study suggests that IN CEPO-FC in low doses could be promising for improving cognition and synaptic plasticity deficits in Alzheimer's disease and since IN route of administration is a convenient way, choosing IN CEPO-FC for clinical trial might worth consideration. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Zahra Mansouri
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Zaringhalam
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Maghsoudi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Zhu Y, Hui Q, Zhang Z, Fu H, Qin Y, Zhao Q, Li Q, Zhang J, Guo L, He W, Han C. Advancements in the study of synaptic plasticity and mitochondrial autophagy relationship. J Neurosci Res 2024; 102:e25309. [PMID: 38400573 DOI: 10.1002/jnr.25309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Synapses serve as the points of communication between neurons, consisting primarily of three components: the presynaptic membrane, synaptic cleft, and postsynaptic membrane. They transmit signals through the release and reception of neurotransmitters. Synaptic plasticity, the ability of synapses to undergo structural and functional changes, is influenced by proteins such as growth-associated proteins, synaptic vesicle proteins, postsynaptic density proteins, and neurotrophic growth factors. Furthermore, maintaining synaptic plasticity consumes more than half of the brain's energy, with a significant portion of this energy originating from ATP generated through mitochondrial energy metabolism. Consequently, the quantity, distribution, transport, and function of mitochondria impact the stability of brain energy metabolism, thereby participating in the regulation of fundamental processes in synaptic plasticity, including neuronal differentiation, neurite outgrowth, synapse formation, and neurotransmitter release. This article provides a comprehensive overview of the proteins associated with presynaptic plasticity, postsynaptic plasticity, and common factors between the two, as well as the relationship between mitochondrial energy metabolism and synaptic plasticity.
Collapse
Affiliation(s)
- Yousong Zhu
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qinlong Hui
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Zheng Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Hao Fu
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Yali Qin
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qiong Zhao
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qinqing Li
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Junlong Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
| | - Lei Guo
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
| | - Wenbin He
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
| | - Cheng Han
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
5
|
Xia X, Li M, Wei R, Li J, Lei Y, Zhang M. Intracerebral hirudin injection alleviates cognitive impairment and oxidative stress and promotes hippocampal neurogenesis in rats subjected to cerebral ischemia. Neuropathology 2023; 43:362-372. [PMID: 36918198 DOI: 10.1111/neup.12897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 03/16/2023]
Abstract
Cerebral ischemia starts with cerebral blood flow interruption that causes severely limited oxygen and glucose supply, eliciting a cascade of pathological events, such as excitotoxicity, oxidative stress, calcium dysregulation, and inflammatory response, which could ultimately result in neuronal death. Hirudin has beneficial effects in ischemic stroke and possesses antioxidant and anti-inflammatory properties. Therefore, we investigated the biological functions of hirudin and its related mechanisms in cerebral ischemia. The ischemia-like conditions were induced by transient middle cerebral artery occlusion (MCAO). To investigate hirudin roles, intracerebroventricular injection of 10 U hirudin was given to the rats. Cognitive and motor functions were examined by beam walking and Morris water maze tests. 2,3,5-triphenyl tetrazolium chloride-stained brain sections were used to measure infarct volume. Oxidative stress was determined by assessment of oxidative stress markers. The proliferated cells were labeled by BrdU and Nestin double staining. Western blotting was performed to measure protein levels. Hirudin administration improved cognitive and motor deficits post-ischemia. Hirudin reduced brain infarction and neurological damage in MCAO-subjected rats. Hirudin alleviated oxidative stress and enhanced neurogenesis in ischemic rats. Hirudin facilitated the promotion of phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and serine-threonine kinase. In sum, hirudin alleviates cognitive deficits by attenuating oxidative stress and promoting hippocampal neurogenesis through the regulation of ERK1/2 and serine-threonine kinase in MCAO-subjected rats.
Collapse
Affiliation(s)
- Xianfeng Xia
- Department of Traditional Chinese Medicine, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Min Li
- Department of Neurology, Baoji Third People's Hospital, Baoji, China
| | - Renxian Wei
- Department of Traditional Chinese Medicine, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Jin Li
- Department of Traditional Chinese Medicine, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Yulin Lei
- Department of Traditional Chinese Medicine, Zhucheng Street Hospital, Wuhan, China
| | - Meikui Zhang
- Department of Traditional Chinese Medicine, The General Hospital of Chinese PLA, Beijing, China
| |
Collapse
|
6
|
Dan Q, Ma Z, Tan Y, Visar B, Chen L. AQP4 knockout promotes neurite outgrowth via upregulating GAP43 expression in infant rats with hypoxic-ischemic brain injury. IBRAIN 2022; 8:324-337. [PMID: 37786741 PMCID: PMC10528973 DOI: 10.1002/ibra.12062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 10/04/2023]
Abstract
Neonatal hypoxic-ischemic encephalopathy (NHIE) induces severe cerebral damage and neurological dysfunction, with seldom effective therapy. Aquaporin-4 (AQP4) is involved in aggravating brain damage induced by NHIE. This study aimed to investigate the role of AQP4 underlying the pathogenesis of NHIE. Neonatal Sprague-Dawley rats were used to establish neonatal hypoxic-ischemic (HI) models, and the expression of AQP4 in the cortex, hippocampus, and lung tissues was detected by real-time quantitative polymerase chain reaction as well as Western blot. Primary cortical neurons were cultured for the oxygen-glucose deprivation (OGD) model, and siRNA was used to silence the expression of AQP4. Immunostaining of Tuj1 was performed to observe the axonal growth. CRISPER/Cas9 technology was used to knock out AQP4. The results demonstrated that AQP4 was upregulated in the cortex, hippocampus, and lung tissues in neonatal rats with HI and OGD neurons. Besides, silencing AQP4 promoted axonal growth of OGD neurons, and AQP4 knockout notably improved long-term neurobehavioral impairment. Furthermore, GAP43 was found closely correlated with AQP4 via GeneMANIA prediction. Significant downregulation of GAP43 was induced in OGD neurons, while AQP4 knockout markedly upregulated its expression in rats. This indicated that the depletion of AQP4 may enhance axonal regeneration and promote the long-term neurobehavioral recovery associated with the upregulation of GAP43 expression.
Collapse
Affiliation(s)
- Qi‐Qin Dan
- National‐Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China HospitalSichuan UniversityChengduChina
| | - Zheng Ma
- National‐Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China HospitalSichuan UniversityChengduChina
| | - Ya‐Xin Tan
- National‐Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China HospitalSichuan UniversityChengduChina
| | - Belegu Visar
- Center for Epigenetics and Induced Pluripotent Stem Cells, Kennedy Krieger InstituteJohns Hopkins UniversityBaltimoreUSA
| | - Li Chen
- National‐Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
7
|
Ma H, Hu ZC, Long Y, Cheng LC, Zhao CY, Shao MK. Tanshinone IIA Microemulsion Protects against Cerebral Ischemia Reperfusion Injury via Regulating H3K18ac and H4K8ac In Vivo and In Vitro. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1845-1868. [DOI: 10.1142/s0192415x22500781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tanshinone IIA (TanIIA) has neuroprotective effects against cerebral ischemia reperfusion injury (CIRI), but its clinical application is limited due to poor water solubility and robust first pass elimination property. In this study, we developed microemulsion loaded with TanIIA (TanIIA ME) to break through these limitations, and explored the neuroprotective effect of TanIIA ME against CIRI and the epigenetic regulation mechanism of this neuroprotection. In vivo, middle cerebral artery occlusion (MCAO) models were treated with TanIIA ME and TanIIA solution or sodium valproate as a control. The effect of TanIIA ME on HDAC activity was determined by ELISA assay. In addition, we used primary hippocampal neurons to establish oxygen-glucose deprivation and reoxygenation (OGD/R) models. Lactate dehydrogenase (LDH) assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay were performed to investigate the neuroprotective efficacy of TanIIA ME. Subsequently, the expression of H3K18ac, H4K8ac, NMDAR1, caspase-3, and MAP-2 were investigated in MCAO or OGD/R models treated with TanIIA ME, TanIIA solution or sodium valproate. In vivo experimental results indicated that TanIIA ME significantly reduced neurological scores, infarction volume, and HDAC activity compared with TanIIA solution and MCAO group, accompanied by upregulation of H3K18ac, H4K8ac, and MAP-2 expression and downregulation of NMDAR1 and caspase-3 expression. Additionally, in OGD/R models, the results demonstrated that TanIIA ME treatment had a better neuroprotective effect along with increased H3K18ac, H4K8ac, and MAP-2 expression and decreased NMDAR1 and caspase-3 expression, compared with the other treatments except sodium valproate. Overall, TanIIA ME treatment exhibited superior efficacy in protecting against CIRI through mechanisms that might involve the inhibition of NMDAR1 and caspase-3 expression and the enhancement of MAP-2 expression by regulating histone H3K18 and H4K8 acetylation. Thus, TanIIA ME could be potentially used to develop a promising drug for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Hui Ma
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, P. R. China
| | - Zeng-Chun Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, P. R. China
| | - Yu Long
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, P. R. China
| | - Li-Chun Cheng
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, P. R. China
| | - Chen-Yang Zhao
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, P. R. China
| | - Ming-Kun Shao
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, P. R. China
| |
Collapse
|