1
|
Dos Santos ACC, Figueiredo-Vanzan D, Bentes J, Motta JM, Mata-Santos HA, Pyrrho ADS, Castelo-Branco MTL. Tetrylpyamethrazine alleviates hepatic fibrosis induced by experimental mansonic schistosomiasis. Inflammopharmacology 2025:10.1007/s10787-025-01759-1. [PMID: 40268854 DOI: 10.1007/s10787-025-01759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/11/2025] [Indexed: 04/25/2025]
Abstract
Hepatic fibrosis resulting from human mansonic schistosomiasis significantly impairs liver function and contributes substantially to morbidity associated with helminth infections. This pathological state develops following the deposition of helminth eggs within hepatic tissues, triggering a granulomatous inflammatory reaction. Schistosomiasis, a neglected tropical disease affecting approximately 240 million individuals globally, represents a major public health challenge. Although praziquantel (PZQ) is recommended by the World Health Organization (WHO) as the primary treatment for helminth infections, additional therapies are required to address the associated liver fibrosis. This study investigated the efficacy of tetramethylpyrazine (TMP), a natural compound known for its anti-inflammatory, antifibrotic, and hepatoprotective properties in various experimental models, in mitigating hepatic fibrosis induced by mansonic schistosomiasis. Our in vivo experiments demonstrated that TMP treatment significantly reduced hepatic granuloma size, as evidenced by histological analysis. Furthermore, our in vitro studies showed that TMP increased levels of the anti-inflammatory cytokine IL-10 while decreasing levels of the profibrotic cytokine IL-13 in a concentration-dependent manner. Immunofluorescence analysis also revealed that TMP effectively inhibited collagen deposition. Collectively, these findings suggest that TMP exhibits potential as an anti-inflammatory and antifibrotic agent for hepatic fibrosis resulting from Schistosoma mansoni infection.
Collapse
Affiliation(s)
- Ana Carolina Campos Dos Santos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Josiane Bentes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Maria Motta
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Morgana Teixeira Lima Castelo-Branco
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Zhao T, Wang X, Li Z, Qin D. Yiqi Yangxue formula inhibits cartilage degeneration in knee osteoarthritis by regulating LncRNA-UFC1/miR-34a/MMP-13 axis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118930. [PMID: 39393561 DOI: 10.1016/j.jep.2024.118930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Knee osteoarthritis (KOA) is a prevalent and disabling clinical condition affecting joint structures worldwide. The Yiqi Yangxue formula (YQYXF) is frequently prescribed in clinical settings for the treatment of KOA. Existing research has primarily focused on alterations in drug metabolism, with limited investigation into the epigenetic effects of YQYXF, particularly in relation to non-coding RNA. AIM OF THE STUDY Exploring the effects of YQYXF on critical factors of long chain non-coding RNA UFC1/miR-34a/matrix metalloproteinase-13 (MMP-13) axis and their interrelationships. METHODS UHPLC-QE-MS technology was used to identify the YQYXF ingredients in rat serum. KEGG and GO analysis were performed on the targets of blood components acting on KOA using a database. Simultaneously, a protein interaction network was constructed using target proteins and metabolites to identify the core components and key pathways of YQYXF. The KOA rat model was established using an improved Hulth method. SPF SD rats were randomly divided into normal group, sham surgery group, model group, celecoxib capsules group (18 mg/kg), YQYXF low, medium and high dose groups (4.6 g/kg, 9.2 g/kg, 18.4 g/kg). Observe the synovial and cartilage tissues of rats using pathological methods. RT-PCR was used to detect the levels of UFC1, miR-34a, and MMP-13 in cartilage. Immunohistochemistry was used to detect the levels of MMP-13 and ADAMTS-5 in cartilage. ELISA method was used to detect the levels of MMP-13 and ADAMTS-5 in serum. In addition, we further validated the regulation of crucial factor expression levels of UFC1/miR-34a/MMP-13 axis in rat chondrocytes and degenerative chondrocytes of KOA patients by YQYXF, providing a basis for its treatment of KOA. RESULTS The compounds that YQYXF enters the bloodstream mainly contain flavonoids and phenylpropanoid compounds. The core components that act on OA include quercetin, fisetin, and demethylweldelolactone. The main target pathways are the IL-17 signaling pathway, lipid and atherosclerosis, cellular sensitivity, inflammatory mediator regulation of TRP channels, TNF signaling pathway, relaxin signaling pathway and C-type lectin receptor signaling pathway. YQYXF inhibited the expression of miR-34a and MMP-13 mRNA, and reduced the protein levels of MMP-13 and ADAMTS-5. In vitro studies have confirmed that 20% YQYXF serum promoted UFC1 and reduce miR-34a levels. In addition, miR-34a in sh-UFC1+10% YQYXF serum and sh-UFC1+20% YQYXF serum groups significantly decreased compared to the sh-UFC1 group. CONCLUSION The anti-KOA cartilage degeneration effect of YQYXF might be related to inhibiting cell apoptosis and promoting cell proliferation, which regulated the lncRNA-UFC1/miR-34a/MMP-13 axis.
Collapse
MESH Headings
- Animals
- Matrix Metalloproteinase 13/metabolism
- Matrix Metalloproteinase 13/genetics
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Drugs, Chinese Herbal/pharmacology
- Rats, Sprague-Dawley
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Osteoarthritis, Knee/drug therapy
- Osteoarthritis, Knee/pathology
- Osteoarthritis, Knee/metabolism
- Rats
- Male
- Chondrocytes/drug effects
- Chondrocytes/metabolism
- Cartilage, Articular/drug effects
- Cartilage, Articular/pathology
- Cartilage, Articular/metabolism
- Disease Models, Animal
Collapse
Affiliation(s)
- Ting Zhao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China; School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Xinchang Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China.
| | - Zhaofu Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Dongdong Qin
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China; School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
3
|
Geng Q, Wu W, Yang M, Gu F, Cai W, Qin Y, Wei L, Wang H, Li N. Guilu Erxian glue reduces endoplasmic reticulum stress-mediated apoptosis and restores the balance of extracellular matrix synthesis and degradation in chondrocytes by inhibiting the ATF6/GRP78/CHOP signaling pathway. Heliyon 2024; 10:e39987. [PMID: 39759286 PMCID: PMC11699092 DOI: 10.1016/j.heliyon.2024.e39987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/28/2024] [Accepted: 10/29/2024] [Indexed: 01/07/2025] Open
Abstract
Knee Osteoarthritis (KOA) is characterized by phenotypic alterations, apoptosis, and the breakdown of the extracellular matrix (ECM) in the superficial articular cartilage cells. The inflammatory response activates the Endoplasmic Reticulum Stress (ERS) signaling pathway, which plays a critical role in the pathophysiology and progression of KOA. Chondrocytes stimulated by thapsigargin(TG)exhibit heightened ERS and significantly increase the expression of ERS-associated proteins. Key mediators of ERS-induced apoptosis include X-box-binding protein 1(XBP1), elevated levels of the protein transport protein Sec61 subunit (SEC61), and C/EBP homologous protein (CHOP). While the precise mechanism of action of Guilu Erxian Glue (GEG), a medication commonly used in the clinical treatment of KOA, remains to be fully elucidated, our research has shown that GEG mitigates the imbalance between ECM synthesis and degradation, as well as chondrocyte apoptosis resulting from ERS. This effect is likely achieved through the suppression of the Activating Transcription Factor 6 (ATF6)/Glucose-Regulatory Protein 78 (GRP78)/CHOP signaling pathway. In summary,our research results indicate that GEG can activate the ATF6/GRP78/CHOP signaling pathway to restore endoplasmic reticulum (ER) homeostasis in chondrocytes, thereby reducing chondrocyte apoptosis and ultimately promoting the balance between ECM synthesis and degradation.
Collapse
Affiliation(s)
- Qiudong Geng
- Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Key Laboratory of Traditional Chinese Medicine for Bone Injury and Sports Rehabilitation, Ministry of Education, Fuzhou, 350122, China
| | - Weixin Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Meixin Yang
- Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Fucheng Gu
- Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Weijun Cai
- Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Yangyi Qin
- Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Lifang Wei
- Fujian University of Chinese Medicine Third Affiliated Hospital, Fuzhou, 350122, China
| | - Heming Wang
- Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Nan Li
- Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
- Key Laboratory of Traditional Chinese Medicine for Bone Injury and Sports Rehabilitation, Ministry of Education, Fuzhou, 350122, China
| |
Collapse
|
4
|
Lu Y, Zhou J, Wang H, Gao H, Ning E, Shao Z, Hao Y, Yang X. Endoplasmic reticulum stress-mediated apoptosis and autophagy in osteoarthritis: From molecular mechanisms to therapeutic applications. Cell Stress Chaperones 2024; 29:805-830. [PMID: 39571722 DOI: 10.1016/j.cstres.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/08/2024] [Accepted: 11/16/2024] [Indexed: 12/09/2024] Open
Abstract
Osteoarthritis (OA) is characterized primarily by the degeneration of articular cartilage, with a high prevalence and disability rate. The functional phenotype of chondrocytes, as the sole cell type within cartilage, is vital for OA progression. Due to the avascular nature of cartilage and its limited regenerative capacity, repair following injury poses significant challenges. Various cellular stressors, including hypoxia, nutrient deprivation, oxidative stress, and collagen mutations, can lead to the accumulation of misfolded proteins in the endoplasmic reticulum (ER), resulting in ER stress (ERS). In response to restore ER homeostasis as well as cellular vitality and function, a series of adaptive mechanisms are triggered, including the unfolded protein response, ER-associated degradation, and ER-phagy. Prolonged or severe ERS may exceed the adaptive capacity of cells, leading to dysregulation in apoptosis and autophagy-key pathogenic factors contributing to chondrocyte damage and OA progression. This review examines the relationship between ERS in OA chondrocytes and both apoptosis and autophagy in order to identify potential therapeutic targets and strategies for prevention and treatment of OA.
Collapse
Affiliation(s)
- Yifan Lu
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Jing Zhou
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Hong Wang
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Hua Gao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Eryu Ning
- Gusu School, Nanjing Medical University, Suzhou, PR China; Department of Sports Rehabilitation, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China
| | - Zhiqiang Shao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China.
| | - Xing Yang
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, PR China; Gusu School, Nanjing Medical University, Suzhou, PR China.
| |
Collapse
|
5
|
Tao J, Zhou J, Xu L, Yang J, Mu X, Fan X. Conductive, injectable hydrogel equipped with tetramethylpyrazine regulates ferritinophagy and promotes spinal cord injury repair. Int J Biol Macromol 2024; 283:137887. [PMID: 39571843 DOI: 10.1016/j.ijbiomac.2024.137887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/22/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
Up to now, the clinical treatment of spinal cord injury (SCI) to recover the locomotion function, sensory function, and autonomic function of patients is a global medical challenge. In this study, based on the excellent effects of Tetramethylpyrazine (TMP) on regulating pathological micro-environment, we designed a new injectable conductive hydrogel consists of water-soluble polypyrrole (Ppy), agar, and TMP. The TMP@PA hydrogel has excellent physicochemical properties, bio-safety, and drug release ability, which can be injected into lesions in situ without secondary injury for SCI. Our in vivo and in vitro experiments have demonstrated that the TMP@PA hydrogel can not only fill the spinal cord cavity to reconstruct the electrical conduction pathway but also release TMP continuously to inhibit ferroptosis by regulating nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy regulated by Yes-Associated Protein (YAP) to promote SCI repair. Collectively, TMP@PA hydrogel may be an effective tissue engineering scaffold to treat SCI with highly promising clinical applications.
Collapse
Affiliation(s)
- Jingwei Tao
- Center for Orthopedic Surgery, Dongzhimen Hospital Beijing University of Chinese Medicine, Beijing, China; Beijing University of Chinese Medicine, Beijing, China
| | - Jingya Zhou
- Capital Medical University Affiliated Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Lin Xu
- Center for Orthopedic Surgery, Dongzhimen Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Jizhou Yang
- Center for Orthopedic Surgery, Dongzhimen Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Xiaohong Mu
- Center for Orthopedic Surgery, Dongzhimen Hospital Beijing University of Chinese Medicine, Beijing, China.
| | - Xiao Fan
- Qingdao Municipal Hospital, Qingdao, China.
| |
Collapse
|
6
|
Zhang YJ, Chen LF, Li X, Chen JH, Tan ZK. Tetramethylpyrazine alleviates hypoxia-induced proliferation, migration, and inflammatory response of fibroblast-like synoviocytes via inhibiting the HIF-1α- circCDC42BPB pathway. Adv Rheumatol 2024; 64:19. [PMID: 38449057 DOI: 10.1186/s42358-024-00355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024] Open
Abstract
OBJECTIVES Rheumatoid arthritis (RA) is a chronic inflammatory joint disease, which might trigger cartilage, bone damage, and disability. Recent studies have suggested that Tetramethylpyrazine (TMP), an alkaloid monomer isolated from the rhizome of the traditional herbal medicine Ligusticum wallichii Franch, exerts a broad spectrum of pharmacological properties, containing anti-inflammatory. This study aimed to analyze the role and underlying mechanism of TMP in RA. METHODS Under Hypoxia condition, RA-Fibroblast-like synoviocyte (FLS) were treated with TMP at different doses. Cell viability, proliferation, cell cycle progression, and migration were detected using Cell Counting Kit-8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry assay, wound healing assay, and transwell assay. Cyclin D1, Proliferating cell nuclear antigen (PCNA), Matrix metalloproteinase-2 (MMP2), MMP9, and hypoxia-inducible factor-1α (HIF-1α) protein levels were measured using western blot assay. Interleukin-6 (IL-6) and IL-8 were evaluated using ELISA. Circular RNA (circRNA) hsa_circ_0005178 (circCDC42BPB), CDC42BPB, and HIF-1α expression were determined using real-time quantitative polymerase chain reaction (RT-qPCR). Binding between HIF-1α and CDC42BPB promoter was predicted by JASPAR and verified using dual-luciferase reporter and Chromatin immunoprecipitation (ChIP) assays. RESULTS TMP might hinder FLS proliferation, cycle progression, migration, and inflammatory response under hypoxic conditions. CircCDC42BPB expression was increased in RA patients and RA-FLSs treated with hypoxia, while its level was obviously reduced in RA-FLSs treated with hypoxia and TMP. TMP might abolish hypoxia-induced circCDC42BPB expression. Upregulation of circCDC42BPB might partially overturn the repression of TMP on hypoxia-caused RA-FLS damage. TMP might regulate circCDC42BPB level via HIF-1α in RA-FLSs under hypoxic conditions. CONCLUSION TMP might block RA-FLS injury partly via regulating the HIF-1α- circCDC42BPB pathway, providing a promising therapeutic target for RA.
Collapse
Affiliation(s)
- Yu-Jing Zhang
- Department of Rheumatology, General Hospital of Central Theater Command, No. 627 Wuyi Road, Wuchang District, Wuhan, Hubei, 430070, China
| | - Li-Feng Chen
- Department of Rheumatology, General Hospital of Central Theater Command, No. 627 Wuyi Road, Wuchang District, Wuhan, Hubei, 430070, China.
| | - Xu Li
- Department of Cardiology, Guiqian International General Hospital, No. 1 Dongfeng Avenue, Wudang District, Guiyang, Guizhou, 550018, China
| | - Jian-Hua Chen
- Department of Rheumatology, General Hospital of Central Theater Command, No. 627 Wuyi Road, Wuchang District, Wuhan, Hubei, 430070, China
| | - Zhang-Kui Tan
- Department of Rheumatology, General Hospital of Central Theater Command, No. 627 Wuyi Road, Wuchang District, Wuhan, Hubei, 430070, China
| |
Collapse
|
7
|
Chang CY, Wu CC, Pan PH, Wang YY, Lin SY, Liao SL, Chen WY, Kuan YH, Chen CJ. Tetramethylpyrazine alleviates mitochondrial abnormality in models of cerebral ischemia and oxygen/glucose deprivation Reoxygenation. Exp Neurol 2023; 367:114468. [PMID: 37307890 DOI: 10.1016/j.expneurol.2023.114468] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Traditional herbal medicine Ligusticum wallichii Franchat (Chuan Xiong) is frequently prescribed and highly recommended to patients with stroke. Rodent studies have demonstrated the neuroprotective effects of its active component tetramethylpyrazine against post-stroke brain injury and highlighted its role in antioxidant, anti-inflammation, and anti-apoptosis activity. Using permanent cerebral ischemia in rats and oxygen/glucose deprivation and reoxygenation (OGDR) in rat primary neuron/glia cultures, this study sheds light on the role of mitochondria as crucial targets for tetramethylpyrazine neuroprotection. Tetramethylpyrazine protected against injury and alleviated oxidative stress, interleukin-1β release, and caspase 3 activation both in vivo and in vitro. Reduction of mitochondrial biogenesis- and integrity-related proliferator-activated receptor-gamma coactivator-1 alpha, mitochondrial transcription factor A (TFAM), translocase of outer mitochondrial membrane 20, mitochondrial DNA, and citrate synthase activity, as well as activation of mitochondrial dynamics disruption-related Lon protease, dynamin-related protein 1 (Drp1) phosphorylation, stimulator of interferon genes, TANK-binding kinase 1 phosphorylation, protein kinase RNA-like endoplasmic reticulum kinase phosphorylation, eukaryotic initiation factor 2α phosphorylation, and activating transcription factor 4 were revealed in permanent cerebral ischemia in rats and OGDR in neuron/glia cultures. TMP alleviated those biochemical changes. Our findings suggest that preservation or restoration of mitochondrial dynamics and functional integrity and alleviation of mitochondria-oriented pro-oxidant, pro-inflammatory, and pro-apoptotic cascades are alternative neuroprotective mechanisms of tetramethylpyrazine. Additionally, mitochondrial TFAM and Drp1 as well as endoplasmic reticulum stress could be targeted by TMP to induce neuroprotection. Data of this study provide experimental base to support clinical utility and value of Chuan Xiong towards stroke treatment and highlight an alternative neuroprotective target of tetramethylpyrazine.
Collapse
Affiliation(s)
- Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung City 420, Taiwan; Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung City 407, Taiwan; Department of Financial Engineering, Providence University, Taichung City 433, Taiwan; Department of Data Science and Big Data Analytics, Providence University, Taichung City 433, Taiwan
| | - Pin-Ho Pan
- Department of Pediatrics, Tungs' Taichung MetroHarbor Hospital, Taichung City 435, Taiwan
| | - Ya-Yu Wang
- Department of Family Medicine, Taichung Veterans General Hospital, Taichung City 407, Taiwan.
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City 407, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei City 112, Taiwan.
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan.
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan.
| | - Yu-Hsiang Kuan
- Department of Pharmacology, Chung Shan Medical University, Taichung City 402, Taiwan.
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan.
| |
Collapse
|
8
|
Wang P, Qian H, Xiao M, Lv J. Role of signal transduction pathways in IL-1β-induced apoptosis: Pathological and therapeutic aspects. Immun Inflamm Dis 2023; 11:e762. [PMID: 36705417 PMCID: PMC9837938 DOI: 10.1002/iid3.762] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Interleukin-1β (IL-1β) is a pro-inflammatory cytokine mainly produced by monocytes and macrophages with a wide range of biological effects. Evidence has shown that IL-1β plays a vital role in the process of apoptosis; however, the specific mechanisms, by which IL-1β induces apoptosis, vary due to different cellular and experimental conditions. Therefore, this present reviewstudy aimed to systematically review the association between the molecular mechanisms of IL-1β-induced apoptosis in pathological processes and the role of signaling pathways. This article also sought to briefly investigate the potential of signaling pathway-targeted therapy in the prevention and treatment of disease. METHODS This is a literature review article. The present discourse aim is first to scrutinize and assess the available literature on IL-1β and apoptosis. The relevant studies using the keywords of "IL-1β-induced apoptosis" and "signaling pathways" were searched in the databases of PubMed, Scopus, Google Scholar, and Web of Science. Gathered relevant material, and extracted information was then assessed. RESULTS IL-1β can induce apoptosis in various types of cells under different external stimuli via the mitochondrial pathway, death receptor pathway and endoplasmic reticulum pathway, and that the different pathways are often interconnected. The NF-kB signaling pathway, p38MAPK, and JNK signaling pathways mainly play a proapoptotic part, and the ERK1/2 pathway has a bidirectional role in regulating apoptosis, while activation of the PI3K-Akt signaling pathway can inhibit apoptosis. CONCLUSION This review indicates that IL-1β-induced apoptosis plays an important role in pathogenesis and development of pathology of many inflammatory diseases. Elucidating the role of the signaling pathways will aid the development of targeted therapeutic treatments.
Collapse
Affiliation(s)
- Peixuan Wang
- Department of Pediatric Dentistry, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
| | - Hong Qian
- Department of Pediatric Dentistry, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
| | - Manxue Xiao
- Department of Pediatric Dentistry, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
| | - Jingwen Lv
- Department of Pediatric Dentistry, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
9
|
Tetramethylpyrazine: A review on its mechanisms and functions. Biomed Pharmacother 2022; 150:113005. [PMID: 35483189 DOI: 10.1016/j.biopha.2022.113005] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Ligusticum chuanxiong Hort (known as Chuanxiong in China, CX) is one of the most widely used and long-standing medicinal herbs in China. Tetramethylpyrazine (TMP) is an alkaloid and one of the active components of CX. Over the past few decades, TMP has been proven to possess several pharmacological properties. It has been used to treat a variety of diseases with excellent therapeutic effects. Here, the pharmacological characteristics and molecular mechanism of TMP in recent years are reviewed, with an emphasis on the signal-regulation mechanism of TMP. This review shows that TMP has many physiological functions, including anti-oxidant, anti-inflammatory, and anti-apoptosis properties; autophagy regulation; vasodilation; angiogenesis regulation; mitochondrial damage suppression; endothelial protection; reduction of proliferation and migration of vascular smooth muscle cells; and neuroprotection. At present, TMP is used in treating cardiovascular, nervous, and digestive system conditions, cancer, and other conditions and has achieved good curative effects. The therapeutic mechanism of TMP involves multiple targets, multiple pathways, and bidirectional regulation. TMP is, thus, a promising drug with great research potential.
Collapse
|