1
|
Zhao Y, Xing W, Chen W, Wang Y. Integrated bioinformatics analysis and biological experiments to identify key immune genes in vascular dementia. Front Immunol 2025; 16:1560438. [PMID: 40196107 PMCID: PMC11973090 DOI: 10.3389/fimmu.2025.1560438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Objectives This study aimed to identify key immune genes to provide new perspectives on the mechanisms and diagnosis of vascular dementia (VaD) based on bioinformatic methods combined with biological experiments in mice. Methods We obtained gene expression profiles from a Gene Expression Omnibus database (GSE186798). The gene expression data were analysed using integrated bioinformatics and machine learning techniques to pinpoint potential key immune-related genes for diagnosing VaD. Moreover, the diagnostic accuracy was evaluated through receiver operating characteristic curve analysis. The microRNA, transcription factor (TF), and drug-regulating hub genes were predicted using the database. Immune cell infiltration has been studied to investigate the dysregulation of immune cells in patients with VaD. To evaluate cognitive impairment, mice with bilateral common carotid artery stenosis (BCAS) were subjected to behavioural tests 30 d after chronic cerebral hypoperfusion. The expression of hub genes in the BCAS mice was determined using a quantitative polymerase chain reaction(qPCR). Results The results of gene set enrichment and gene set variation analyses indicated that immune-related pathways were upregulated in patients with VaD. A total of 1620 immune genes were included in the combined immune dataset, and 323 differentially expressed genes were examined using the GSE186798 dataset. Thirteen potential genes were identified using differential gene analysis. Protein-protein interaction network design and functional enrichment analysis were performed using the immune system as the main subject. To evaluate the diagnostic value, two potential core genes were selected using machine learning. Two putative hub genes, Rac family small GTPase 1(RAC1) and CKLF-like MARVEL transmembrane domain containing 5 (CMTM5) exhibit good diagnostic value. Their high confidence levels were confirmed by validating each biomarker using a different dataset. According to GeneMANIA, VaD pathophysiology is strongly associated with immune and inflammatory responses. The data were used to construct miRNA hub gene, TFs-hub gene, and drug-hub gene networks. Varying levels of immune cell dysregulation were also observed. In the animal experiments, a BCAS mouse model was employed to mimic VaD in humans, further confirmed using the Morris water maze test. The mRNA expression of RAC1 and CMTM5 was significantly reduced in the BCAS group, which was consistent with the results of the integrated bioinformatics analysis. Conclusions RAC1 and CMTM5 are differentially expressed in the frontal lobes of BCAS mice, suggesting their potential as biomarkers for diagnosing and prognosis of VaD. These findings pave the way for exploring novel molecular mechanisms aimed at preventing or treating VaD.
Collapse
Affiliation(s)
- Yilong Zhao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wen Xing
- Department of Clinical Laboratory, Beijing Bo’ai Hospital, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation, Capital Medical University, Beijing, China
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weiqi Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- National Center for Neurological Disorders, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Wang Y, Ju Z, Li L, Zhang S, Wang Z, Yang L. A complementary and integrated strategy for multicomponent characterization and attribution of Danning tablet based on convergence and liquid chromatography combined with mass spectrometry. J Pharm Biomed Anal 2025; 255:116628. [PMID: 39731928 DOI: 10.1016/j.jpba.2024.116628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/02/2024] [Accepted: 12/07/2024] [Indexed: 12/30/2024]
Abstract
Danning tablet (DNT) is a traditional Chinese medicine (TCM) that contains seven herbal ingredients. It has been clinically used to treat liver and gallbladder diseases in humans. However, the complex composition of TCM prescriptions makes it challenging to fully analyze different polar range compounds. The supercritical fluid chromatography (SFC) method has stronger selectivity for weak polarity and low volatility substances. In contrast, ultra-high performance liquid chromatography (UHPLC) has stronger selectivity for compounds with strong polarity and high boiling points, which offsets the disadvantages of SFC. We aimed to establish a complementary and integrated strategy for multicomponent characterization and attribution of DNT based on ultra-performance convergence chromatography (UPCC) and UHPLC combined with quadrupole-time-of-flight mass spectrometry (QTOF-MS) and identify the potential qualitative indicator. The chemical compounds of DNT were analyzed by matching the self-built databases on the UNIFI platform. Network pharmacology was used to verify the reasonableness of the qualitative indicators with the relevant targets and the enrichment pathways related to the treatment of DNT. A total of 247 compounds were characterized. Specifically, the UPCC-QTOF-MS technology individually characterized 73 compounds. The UHPLC-QTOF-MS technology individually characterized 75 compounds. As a result, the study defined 11 compounds as the potential qualitative indicators. The relevant targets and the enrichment pathways related to the treatment of DNT were constructed. This study completed the comprehensive characterization of the full coverage of the polarity of DNT. The potential qualitative indicators can be extended to improve the accuracy of DNT quality evaluation.
Collapse
Affiliation(s)
- Yu Wang
- Shanghai Key Laboratory of Compound Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Zhengcai Ju
- Shanghai Jemincare Pharmaceutical Co. Ltd, Shanghai 201203, China
| | - Linnan Li
- Shanghai Key Laboratory of Compound Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Siyu Zhang
- Shanghai Key Laboratory of Compound Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Compound Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| | - Li Yang
- Shanghai Key Laboratory of Compound Chinese Medicine, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
3
|
Kong P, Yang H, Liu H, Tong Q, Yi MA, Zhao Y, Yan D. CMTM6 promotes hepatocellular carcinoma invasion and metastasis and tumor-associated neutrophil immunoinfiltration through the Wnt/β-catenin pathway. Eur J Med Res 2024; 29:595. [PMID: 39696705 DOI: 10.1186/s40001-024-02189-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND CMTM6 has been closely associated with the onset and progression of various tumor types. However, the precise mechanism by which CMTM6 operates in hepatocellular carcinoma remains elusive, necessitating further investigation. METHODS Expression levels of CMTM6 in hepatocellular carcinoma tissues and cells were analyzed using immunohistochemistry and quantitative real-time PCR. The correlation between CMTM6 expression in hepatocellular carcinoma tissues and clinical pathological characteristics, as well as patient prognosis, was investigated. Proliferation and apoptosis of hepatocellular carcinoma cells with silenced or overexpressed CMTM6 were assessed, alongside measurements of β-catenin and Wnt1 protein expression levels. In vivo research was conducted utilizing a murine subcutaneous transplantation model. Gene Set Enrichment Analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed to elucidate the regulatory mechanism of CMTM6. Additionally, CD66b expression levels in tumor tissue were examined using immunohistochemistry, and the immune infiltration of CMTM6 and tumor-associated neutrophils (TANs) was analyzed. RESULTS Elevated expression levels of CMTM6 in hepatocellular carcinoma tissues and cells were found to be associated with poor patient prognosis. Overexpression of CMTM6 in hepatocellular carcinoma cells was demonstrated to promote cellular proliferation and inhibit apoptosis. Mechanistically, CMTM6 expression levels in hepatocellular carcinoma tissues were observed to positively correlate with β-catenin expression. GSEA and KEGG analysis revealed significant enrichment of CMTM6 in the Wnt/β-catenin pathway, indicating its involvement in pathway regulation. Furthermore, CMTM6 was found to be associated with immune infiltration of TANs in hepatocellular carcinoma tissues. CONCLUSION CMTM6 plays a pivotal role in the development and progression of hepatocellular carcinoma through regulation of the Wnt/β-catenin pathway via β-catenin. Moreover, CMTM6 demonstrates the capacity to promote immune infiltration of TANs in hepatocellular carcinoma tissues. Consequently, CMTM6 exhibits potential as both an early diagnostic marker and a novel therapeutic target for patients with hepatocellular carcinoma.
Collapse
Affiliation(s)
- Panpan Kong
- The First Ward of Hepatobiliary and Pancreatic Surgery, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Huan Yang
- The First Ward of Hepatobiliary and Pancreatic Surgery, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Huifang Liu
- The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qing Tong
- The First Ward of Hepatobiliary and Pancreatic Surgery, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Mamumaimaitijiang-Abula Yi
- The First Ward of Hepatobiliary and Pancreatic Surgery, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yong Zhao
- Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Dong Yan
- The First Ward of Hepatobiliary and Pancreatic Surgery, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
4
|
Fan Y, Zou HQ. CMTM5 influences Hippo/YAP axis to promote ferroptosis in glioma through regulating WWP2-mediated LATS2 ubiquitination. Kaohsiung J Med Sci 2024; 40:890-902. [PMID: 39166861 DOI: 10.1002/kjm2.12889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Glioma, a common malignancy, is characterized by high morbidity and mortality. Promoting ferroptosis can delay tumor progression. Here, we aimed to explore the underlying mechanism of ferroptosis in glioma. In vitro and in vivo experiments were conducted using glioma cells and nude mice. The expression of genes and proteins was evaluated by RT-qPCR, Western blot assay, and immunohistochemical staining. Malignant activities of glioma cells were evaluated using MTT, EdU, and Transwell assays. The levels of Fe2+, lipid reactive oxygen species, and malondialdehyde were determined using commercial kits. The interplays among CMTM5, WWP2, and LATS2 were validated using Co-immunoprecipitation assay. The UALCAN database predicted downregulation of CMTM5 expression in glioma, and low expression of CMTM5 was associated with poor survival outcomes. CMTM5 overexpression inhibited cell growth and invasion and promoted ferroptosis of glioma cells. Besides, CMTM5 protein interacted with WWP2 protein and decreased WWP2 expression. WWP2 silencing attenuated LATS2 ubiquitination to enhance LATS2 expression and phosphorylation of YAP1. CMTM5 exerted a suppressive effect on cell growth and invasion and promoted ferroptosis of glioma cells by regulating the WWP2/LATS2 pathway. In the in vivo experiments, CMTM5 overexpression suppressed tumor growth and enhanced ferroptosis. CMTM5 regulated Hippo/YAP signaling to inhibit cell growth and invasion and to promote ferroptosis in glioma by regulating WWP2-mediated LATS2 ubiquitination, thereby attenuating glioma progression.
Collapse
Affiliation(s)
- Ye Fan
- Brain Hospital of Hunan Province, The Second People's Hospital of Hunan Province, Changsha, Hunan, China
| | - He-Qin Zou
- Brain Hospital of Hunan Province, The Second People's Hospital of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
5
|
Han X, Fu W, Sun Q, Ning J, Zhang J, Matsas S, de Melo FF, Zhang H, Hao X, Meng Q, Gong Y, Zheng H, Zhang J, Ding S. CMTM4 inhibits gastric tumorigenesis and metastasis. J Gastrointest Oncol 2024; 15:1431-1445. [PMID: 39279978 PMCID: PMC11399846 DOI: 10.21037/jgo-24-466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND CKLF-like MARVEL transmembrane domain-containing 4 (CMTM4) is involved in immune regulation and tumor progression; however, its role in gastric cancer (GC) remains unclear. This study explored the role and mechanism of CMTM4 in GC. METHODS Immunohistochemistry was used to analyze CMTM4 expression in human gastric biopsied cells from patients with GC (N=23) or chronic superficial gastritis (N=23). To investigate the function of CMTM4 in GC cells, the gene CMTM4 was knocked down and overexpressed in human gastric adenocarcinoma cell line AGS. The gene CMTM4 was overexpressed in AGS cells and human gastric cell line SGC7901. Cell Counting Kit 8 (CCK-8) and cell clonogenic assays were used to analyze the proliferation of the GC cells. Flow cytometry was used to analyze the effects of CMTM4 on apoptosis and the cell cycle. Wound healing and transwell assays were used to analyze the migration and invasion of the gastric cells, respectively. The mechanism of CMTM4 in GC cells was explored using the tandem mass tags (TMTs) proteome and verified by western blot analysis. RESULTS CMTM4 expression was more downregulated in the human GC tissues than the gastritis tissues. CMTM4 overexpression significantly inhibited the proliferation, migration, and invasion of the GC cells, whereas CMTM4 knockdown enhanced gastric cell proliferation (P>0.05), migration (P>0.05), and invasion (P>0.05). Flow cytometry showed that CMTM4 promoted apoptosis and resulted in G1/S arrest in the GC cells. In addition, the proteome and western blot results showed that STAT1 was significantly upregulated, and the STAT1 signaling pathways were enriched in the GC cells overexpressing CMTM4. CONCLUSIONS Our results suggest that CMTM4 plays a tumor-suppressive role in GC and may affect the growth, migration, and invasion of GC cells through the STAT1 signaling pathway. CMTM4 might have potential value as a prognosis marker and potential therapeutic target for GC therapy.
Collapse
Affiliation(s)
- Xiurui Han
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
| | - Weiwei Fu
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
| | - Qinghua Sun
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
- Department of Geriatric Department, Peking University First Hospital, Beijing, China
| | - Jing Ning
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
| | - Jing Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
| | - Silvio Matsas
- Centro de Estudos e Pesquisas de Hematologia e Oncologia, Santo André, SP, Brazil
| | - Fabrício Freire de Melo
- Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista, Brazil
| | - Hejun Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
| | - Xinyu Hao
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
| | - Qiao Meng
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
| | - Yueqing Gong
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
| | - Huiling Zheng
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
| | - Jing Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0317), Beijing, China
| |
Collapse
|
6
|
Duan SL, Jiang Y, Li GQ, Fu W, Song Z, Li LN, Li J. Research insights into the chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing family (CMTM): their roles in various tumors. PeerJ 2024; 12:e16757. [PMID: 38223763 PMCID: PMC10787544 DOI: 10.7717/peerj.16757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024] Open
Abstract
The chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing (CMTM) family includes CMTM1-8 and CKLF, and they play key roles in the hematopoietic, immune, cardiovascular, and male reproductive systems, participating in the physiological functions, cancer, and other diseases associated with these systems. CMTM family members activate and chemoattract immune cells to affect the proliferation and invasion of tumor cells through a similar mechanism, the structural characteristics typical of chemokines and transmembrane 4 superfamily (TM4SF). In this review, we discuss each CMTM family member's chromosomal location, involved signaling pathways, expression patterns, and potential roles, and mechanisms of action in pancreatic, breast, gastric and liver cancers. Furthermore, we discuss several clinically applied tumor therapies targeted at the CMTM family, indicating that CMTM family members could be novel immune checkpoints and potential targets effective in tumor treatment.
Collapse
Affiliation(s)
- Sai-Li Duan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha Province, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha Province, Hunan, China
| | - Yingke Jiang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha Province, Hunan, China
| | - Guo-Qing Li
- Xiangya School of Medicine, Central South University, Changsha Province, Hunan, China
| | - Weijie Fu
- Xiangya School of Medicine, Central South University, Changsha Province, Hunan, China
| | - Zewen Song
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha Province, Hunan, China
| | - Li-Nan Li
- Department of Oncology, The 1st Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jia Li
- Department of Oncology, The 1st Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
7
|
Wu Z, Ni J, Zhang H, Zhang Y, Lv C, Wang Y, Wang K, Peng B. MLC1 Overexpression Inhibits Tumor Progression through PI3K/AKT Signal Pathway in Prostate Cancer. Adv Biol (Weinh) 2024; 8:e2300060. [PMID: 37821359 DOI: 10.1002/adbi.202300060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/13/2023] [Indexed: 10/13/2023]
Abstract
Prostate cancer (PC) is a prevalent malignancy in males, characterized by high morbidity and mortality. Despite MLC1 being established as a key mediator in tumor progression, its role in PC remains unexplored. This study aims to validate MLC1's anti-tumor effects and uncover potential mechanisms. MLC1's clinical significance is assessed using data from The Cancer Genome Atlas and the Genotype-Tissue Expression databases. MLC1 expression is significantly reduced in PC samples compared with the adjacent normal tissues. MLC1 expression correlates negatively with tumor metastasis and positively with the survival of patients with PC. In vitro, up-regulating MLC1 effectively inhibits tumor progression by curtailing proliferation, infestation, and migration through the deactivation of the PI3K/AKT signaling pathway. Conversely, down-regulating MLC1 promotes PC progression, a phenomenon alleviated by the PI3K/AKT inhibitor, Gefitinib. Furthermore, the anti-tumor function of MLC1 is corroborated by a reduction in tumor volume compared with the negative control in vivo. This study confirms the anti-tumor effects of MLC1 via in vitro and in vivo experiments, demonstrating its potential mechanism of inhibiting the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Zonglin Wu
- Department of Urology, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, 200060, China
- Department of Urology, Shidong Hospital of Yangpu District, Shanghai, 200438, China
| | - Jinliang Ni
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Shanghai Clinical College, Anhui Medical University, Shanghai, 20007, China
| | - Houliang Zhang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yifan Zhang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Chengxun Lv
- Department of Urology, Shidong Hospital of Yangpu District, Shanghai, 200438, China
| | - Yidi Wang
- Department of Urology, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, 200060, China
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Keyi Wang
- Department of Urology, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, 200060, China
- Department of Urology, Shidong Hospital of Yangpu District, Shanghai, 200438, China
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Bo Peng
- Department of Urology, Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, 200060, China
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Shanghai Clinical College, Anhui Medical University, Shanghai, 20007, China
| |
Collapse
|
8
|
Hashemi M, Taheriazam A, Daneii P, Hassanpour A, Kakavand A, Rezaei S, Hejazi ES, Aboutalebi M, Gholamrezaie H, Saebfar H, Salimimoghadam S, Mirzaei S, Entezari M, Samarghandian S. Targeting PI3K/Akt signaling in prostate cancer therapy. J Cell Commun Signal 2023; 17:423-443. [PMID: 36367667 PMCID: PMC10409967 DOI: 10.1007/s12079-022-00702-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/26/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Urological cancers have obtained much attention in recent years due to their mortality and morbidity. The most common and malignant tumor of urological cancers is prostate cancer that imposes high socioeconomic costs on public life and androgen-deprivation therapy, surgery, and combination of chemotherapy and radiotherapy are employed in its treatment. PI3K/Akt signaling is an oncogenic pathway responsible for migration, proliferation and drug resistance in various cancers. In the present review, the role of PI3K/Akt signaling in prostate cancer progression is highlighted. The activation of PI3K/Akt signaling occurs in prostate cancer, while PTEN as inhibitor of PI3K/Akt shows down-regulation. Stimulation of PI3K/Akt signaling promotes survival of prostate tumor cells and prevents apoptosis. The cell cycle progression and proliferation rate of prostate tumor cells increase by PI3K/Akt signaling induction. PI3K/Akt signaling stimulates EMT and enhances metastasis of prostate tumor cells. Silencing PI3K/Akt signaling impairs growth and metastasis of prostate tumor cells. Activation of PI3K/Akt signaling mediates drug resistance and reduces radio-sensitivity of prostate tumor cells. Anti-tumor compounds suppress PI3K/Akt signaling in impairing prostate tumor progression. Furthermore, upstream regulators such as miRNAs, lncRNAs and circRNAs regulate PI3K/Akt signaling and it has clinical implications for prostate cancer patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aria Hassanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Aboutalebi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Gholamrezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- League of European Research Universities, European University Association, University of Milan, Milan, Italy
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
9
|
Pei Y, Zhang Z, Tan S. Current Opinions on the Relationship Between CMTM Family and Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:1411-1422. [PMID: 37649636 PMCID: PMC10464892 DOI: 10.2147/jhc.s417202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/12/2023] [Indexed: 09/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a typically malignant tumor in the digestive system. The mortality of HCC ranks third place in the world, second only to lung cancer and colorectal cancer. For the characteristics of high invasiveness, high metastasis, high recurrence rate as well as short survival time, HCC treatment has always been difficult in clinical practice. Many causes have contributed to the appearance of these features, including insidious onset, high degree of malignancy, lack of effective early molecular diagnostic markers, and disease prediction models. The human chemokine-like factor superfamily (CMTMs) is a new gene family consisting of CKLF and CMTM1-CMTM8. CMTMs have a marvel domain which can activate and chemotaxis immune cells. Many studies have reported that CMTMs are involved in the regulation of cell growth and development, and play an important role in the malignant progression of the immune system and reproductive system, especially in the development of tumors. In this review, we summarized the structure and function of the human CMTMs, the relationship between its family members and HCC, the prognostic value, potential functions, and mechanisms in HCC. CMTMs could provide a new diagnostic and therapeutic target in clinical practice for patients with HCC.
Collapse
Affiliation(s)
- Yulin Pei
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi, People’s Republic of China
- Public Health Department of Guilin Medical University, Guilin, Guangxi, People’s Republic of China
| | - Zhengbao Zhang
- Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Health, Guilin Medical University, Guilin, Guangxi, People’s Republic of China
- Public Health Department of Guilin Medical University, Guilin, Guangxi, People’s Republic of China
| | - Shengkui Tan
- Public Health Department of Youjiang Medical University For Nationalities, Baise, GuangxiPeople's Republic of China
| |
Collapse
|
10
|
Vasiljevic V, Obradovic J, Jurisic V. Significance of EGFR investigation in odontogenic keratocyst: a narrative review. Mol Biol Rep 2023; 50:7089-7098. [PMID: 37314601 DOI: 10.1007/s11033-023-08582-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND The recent classification of odontogenic keratocysts (OKSs) recognized them as benign neoplasms, although previous findings have revealed their aggressive nature. Immunohistochemical and molecular analyses have investigated OKSs, but the role of epidermal growth factor receptor (EGFR) has not been fully investigated, despite the importance of this oncogene in the process of carcinogenesis in tumors of epithelial origin. The EGFR protein is usually overexpressed, and the EGFR gene is mutated or amplified. AIMS OF STUDY This brief review aims to emphasize the importance of EGFR detection in these types of cysts. METHODS AND RESULTS It was revealed that the majority of the studies examined EGFR protein expression using immunohistochemical methods; however, considering EGFR gene variants, mutations were less explored in the previous period from 1992 to 2023. Although EGFR gene polymorphisms are clinically important, they were not identified in the present study. CONCLUSIONS In light of the current significance of EGFR variants, it would be beneficial to examine them in odontogenic lesions. This would enable resolving of discrepancies about their nature, and potentially enhance classifications OKCs in the future.
Collapse
Affiliation(s)
| | - Jasmina Obradovic
- Department of Sciences, Institute for Information Technologies Kragujevac, University of Kragujevac, 34000, Kragujevac, Republic of Serbia
| | - Vladimir Jurisic
- Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000, Kragujevac, Republic of Serbia.
| |
Collapse
|