1
|
Gisina A, Yarygin K, Lupatov A. The Impact of Glycosylation on the Functional Activity of CD133 and the Accuracy of Its Immunodetection. BIOLOGY 2024; 13:449. [PMID: 38927329 PMCID: PMC11200695 DOI: 10.3390/biology13060449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/01/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
The membrane glycoprotein CD133 (prominin-1) is widely regarded as the main molecular marker of cancer stem cells, which are the most malignant cell subpopulation within the tumor, responsible for tumor growth and metastasis. For this reason, CD133 is considered a promising prognostic biomarker and molecular target for antitumor therapy. Under normal conditions, CD133 is present on the cell membrane in glycosylated form. However, in malignancies, altered glycosylation apparently leads to changes in the functional activity of CD133 and the availability of some of its epitopes for antibodies. This review focuses on CD133's glycosylation in human cells and its impact on the function of this glycoprotein. The association of CD133 with proliferation, differentiation, apoptosis, autophagy, epithelial-mesenchymal transition, the organization of plasma membrane protrusions and extracellular trafficking is discussed. In this review, particular attention is paid to the influence of CD133's glycosylation on its immunodetection. A list of commercially available and custom antibodies with their characteristics is provided. The available data indicate that the development of CD133-based biomedical technologies should include an assessment of CD133's glycosylation in each tumor type.
Collapse
Affiliation(s)
- Alisa Gisina
- Laboratory of Cell Biology, V. N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | | | | |
Collapse
|
2
|
Knopik-Skrocka A, Sempowicz A, Piwocka O. Plasticity and resistance of cancer stem cells as a challenge for innovative anticancer therapies - do we know enough to overcome this? EXCLI JOURNAL 2024; 23:335-355. [PMID: 38655094 PMCID: PMC11036066 DOI: 10.17179/excli2024-6972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/20/2024] [Indexed: 04/26/2024]
Abstract
According to the CSC hypothesis, cancer stem cells are pivotal in initiating, developing, and causing cancer recurrence. Since the identification of CSCs in leukemia, breast cancer, glioblastoma, and colorectal cancer in the 1990s, researchers have actively investigated the origin and biology of CSCs. However, the CSC hypothesis and the role of these cells in tumor development model is still in debate. These cells exhibit distinct surface markers, are capable of self-renewal, demonstrate unrestricted proliferation, and display metabolic adaptation. CSC phenotypic plasticity and the capacity to EMT is strictly connected to the stemness state. CSCs show high resistance to chemotherapy, radiotherapy, and immunotherapy. The plasticity of CSCs is significantly influenced by tumor microenvironment factors, such as hypoxia. Targeting the genetic and epigenetic changes of cancer cells, together with interactions with the tumor microenvironment, presents promising avenues for therapeutic strategies. See also the Graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Agnieszka Knopik-Skrocka
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University of Poznań, Poland
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Alicja Sempowicz
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University of Poznań, Poland
- Section of Regenerative Medicine and Cancer Research, Natural Sciences Club, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Oliwia Piwocka
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Center, Poznań, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, Poznań, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
3
|
Jiang L, Liu Y, Liu M, Zheng Y, Chen L, Shan F, Ji J, Cao Y, Kai H, Kang X. REG3A promotes proliferation and DDP resistance of ovarian cancer cells by activating the PI3K/Akt signaling pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:85-96. [PMID: 37665173 DOI: 10.1002/tox.23952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/15/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
This study explored the effect of Regenerating Islet-Derived 3-Alpha (REG3A) on ovarian cancer (OC) progression. REG3A expression was scrutinized in clinical tissues of 97 OC cases by quantitative real-time polymerase chain reaction (qRT-PCR). REG3A expression in OC cells and cisplatin (DDP) resistance OC cells was regulated by transfection. LY294002 (10 μM, inhibitor of the PI3K/Akt signaling pathway) was used to treat OC cells and DDP resistance OC cells. Cell counting kit-8 and methyl-thiazolyl-tetrazolium assays were applied for proliferation and DDP resistance detection. Flow cytometry was utilized for cell cycle and apoptosis analysis. The effect of REG3A on the OC cell in vivo growth was researched by establishing xenograft tumor model via using nude mice using nude mice. The expression of genes in clinical samples, cells and xenograft tumor tissues was investigated by qRT-PCR, Western blot and immunohistochemistry. As a result, REG3A was over-expressed in OC patients and cells, associating with dismal prognosis of patients. REG3A knockdown repressed proliferation, DDP resistance, induced cell cycle arrest and apoptosis of OC cells, and reduced the expression MDR-1, Cyclin D1, Cleaved caspase 3 proteins and the PI3K/Akt signaling pathway activity in OC cells. LY294002 treatment abrogated the promotion effect of REG3A on OC cell proliferation, apoptosis inhibition and DDP resistance. REG3A knockdown suppressed the in vivo growth of OC cells. Thus, REG3A promoted proliferation and DDP resistance of OC cells by activating the PI3K/Akt signaling pathway. REG3A might be a promising target for the clinical treatment of OC.
Collapse
Affiliation(s)
- Lingling Jiang
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Yinglei Liu
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Manhua Liu
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Yanli Zheng
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Liping Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Feng Shan
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Jinlong Ji
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Yang Cao
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Haili Kai
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong, China
| | - Xinyi Kang
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong, China
| |
Collapse
|
4
|
Xue T, Fei S, Gu J, Li N, Zhang P, Liu X, Thompson PR, Zhang X. Inhibiting MEK1 R189 citrullination enhances the chemosensitivity of docetaxel to multiple tumour cells. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220246. [PMID: 37778380 PMCID: PMC10542448 DOI: 10.1098/rstb.2022.0246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/30/2023] [Indexed: 10/03/2023] Open
Abstract
Drug resistance is still a big challenge for cancer patients. We previously demonstrated that inhibiting peptidylarginine deiminase 2 (PADI2) enzyme activity with Cl-amine increases the efficacy of docetaxel (Doc) on tamoxifen-resistant breast cancer cells with PADI2 expression. However, it is not clear whether this effect applies to other tumour cells. Here, we collected four types of tumour cells with different PADIs expression and fully evaluated the inhibitory effect of the combination of PADIs inhibitor (BB-Cla) and Doc in vitro and in vivo on tumour cell growth. Results show that inhibiting PADIs combined with Doc additively inhibits tumour cell growth across the four tumour cells. PADI2-catalysed citrullination of MEK1 Arg 189 exists in the four tumour cells, and blocking the function of MEK1 Cit189 promotes the anti-tumour effect of Doc in these tumour cells. Further analysis shows that inhibiting MEK1 Cit189 decreases the expression of cancer cell stemness factors and helps prevent cancer cell stemness maintenance. Importantly, this combined treatment can partially restore the sensitivity of chemotherapy-resistant cells to docetaxel or cisplatin in tumour cells. Thus, our study provides an experimental basis for the combined therapeutic approaches using docetaxel- and PADIs inhibitors-based strategies in tumour treatment. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.
Collapse
Affiliation(s)
- Teng Xue
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Shujia Fei
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Jian Gu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Nan Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Pengxue Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Xiaoqiu Liu
- College of Basic Medical Science, China Medical University, Shenyang 110122, People's Republic of China
| | - Paul R Thompson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Xuesen Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
- College of Basic Medical Science, China Medical University, Shenyang 110122, People's Republic of China
| |
Collapse
|
5
|
Ye T, Ge Y, Jiang X, Song H, Peng C, Liu B. A review of anti-tumour effects of Ganoderma lucidum in gastrointestinal cancer. Chin Med 2023; 18:107. [PMID: 37641070 PMCID: PMC10463474 DOI: 10.1186/s13020-023-00811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/22/2023] [Indexed: 08/31/2023] Open
Abstract
Gastrointestinal (GI) cancer is the most common cancer in the world and one of the main causes of cancer-related death. Clinically, surgical excision and chemotherapy are the main treatment methods for GI cancer, which is unfortunately accompanied with serious adverse reactions and drug toxicity, bringing irreversible damage to patients and seriously affecting the quality of life. Ganoderma lucidum (G. lucidum) has a long history of medicinal and edible use in China. Its bioactive compounds mainly include polysaccharides, triterpenes, and proteins, which have potential anti-tumor activities by inhibiting proliferation, inducing apoptosis, inhibiting metastasis, and regulating autophagy. Currently, there is no in-depth review on the anti-tumor effect of G. lucidum in GI cancer. Therefore, this review is an attempt to compile the basic characteristics, anti-GI caner mechanisms, and clinical application of G. lucidum, aiming to provide a reference for further research on the role of G. lucidum in the prevention and treatment of GI cancer from the perspective of traditional Chinese and western medicine.
Collapse
Affiliation(s)
- Ting Ye
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yang Ge
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaoying Jiang
- Department of Technology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, 233030, China.
| | - Can Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Bin Liu
- Cancer Research Centre, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| |
Collapse
|
6
|
Pospieszna J, Dams-Kozlowska H, Udomsak W, Murias M, Kucinska M. Unmasking the Deceptive Nature of Cancer Stem Cells: The Role of CD133 in Revealing Their Secrets. Int J Mol Sci 2023; 24:10910. [PMID: 37446085 DOI: 10.3390/ijms241310910] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer remains a leading cause of death globally, and its complexity poses a significant challenge to effective treatment. Cancer stem cells and their markers have become key players in tumor growth and progression. CD133, a marker in various cancer types, is an active research area as a potential therapeutic target. This article explores the role of CD133 in cancer treatment, beginning with an overview of cancer statistics and an explanation of cancer stem cells and their markers. The rise of CD133 is discussed, including its structure, functions, and occurrence in different cancer types. Furthermore, the article covers CD133 as a therapeutic target, focusing on gene therapy, immunotherapy, and approaches to affect CD133 expression. Nanoparticles such as gold nanoparticles and nanoliposomes are also discussed in the context of CD133-targeted therapy. In conclusion, CD133 is a promising therapeutic target for cancer treatment. As research in this area progresses, it is hoped that CD133-targeted therapies will offer new and effective treatment options for cancer patients in the future.
Collapse
Affiliation(s)
- Julia Pospieszna
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Street, 10 Uniwersytetu Poznanskiego Street, 60-631 Poznan, Poland
| | - Hanna Dams-Kozlowska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 15 Garbary Street, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
| | - Wachirawit Udomsak
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Street, 10 Uniwersytetu Poznanskiego Street, 60-631 Poznan, Poland
| | - Marek Murias
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Street, 10 Uniwersytetu Poznanskiego Street, 60-631 Poznan, Poland
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10 Street, 61-614 Poznan, Poland
| | - Malgorzata Kucinska
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd Street, 10 Uniwersytetu Poznanskiego Street, 60-631 Poznan, Poland
| |
Collapse
|