1
|
Chen T, Zhang H, Shan W, Zhou J, You Y. Liver sinusoidal endothelial cells in hepatic fibrosis: opportunities for future strategies. Biochem Biophys Res Commun 2025; 766:151881. [PMID: 40286764 DOI: 10.1016/j.bbrc.2025.151881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells that form the interface between the hepatic vasculature and parenchymal cells, playing a crucial role in maintaining hepatic homeostasis. Under pathological conditions, LSECs undergo capillarization, marked by the loss of fenestrae and formation of a basement membrane, thereby impairing microcirculation and promoting fibrosis. Beyond capillarization, LSECs experience a spectrum of pathological changes-including angiogenesis, endothelial-to-mesenchymal transition (EndMT), autophagy, and senescence-all of which contribute to fibrogenesis through distinct molecular pathways. Moreover, LSECs orchestrate liver fibrotic remodeling through dynamic crosstalk with hepatic stellate cells (HSCs), hepatocytes, Kupffer cells, and immune cells, exerting both pro- and anti-fibrotic effects. This review comprehensively summarizes LSECs dysfunction in hepatic fibrosis, with a particular focus on intercellular communication and emerging therapeutic strategies. Elucidating the regulatory networks that govern LSECs behavior may uncover new opportunities for the diagnosis and treatment of chronic liver disease.
Collapse
Affiliation(s)
- Ting Chen
- Department of human anatomy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Huan Zhang
- Department of human anatomy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Wenqi Shan
- Department of human anatomy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Jinxue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450003, Henan, China.
| | - Yanwen You
- Department of human anatomy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
2
|
Puri M, Sonawane S. Liver Sinusoidal Endothelial Cells in the Regulation of Immune Responses and Fibrosis in Metabolic Dysfunction-Associated Fatty Liver Disease. Int J Mol Sci 2025; 26:3988. [PMID: 40362227 PMCID: PMC12071881 DOI: 10.3390/ijms26093988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/08/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Liver Sinusoidal Endothelial Cells (LSECs) play a crucial role in maintaining liver homeostasis, regulating immune responses, and fibrosis in liver diseases. This review explores the unique functions of LSECs in liver pathology, particularly their roles in immune tolerance, antigen presentation, and the modulation of hepatic stellate cells (HSCs) during fibrosis. LSECs act as key regulators of immune balance in the liver by preventing excessive immune activation while also filtering antigens and interacting with immune cells, including Kupffer cells and T cells. Metabolic Dysfunction-Associated Fatty Liver Disease(MAFLD) is significant because it can lead to advanced liver dysfunction, such as cirrhosis and liver cancer. The prevalence of Metabolic Associated Steatohepatitis (MASH) is increasing globally, particularly in the United States, and is closely linked to rising rates of obesity and type 2 diabetes. Early diagnosis and intervention are vital to prevent severe outcomes, highlighting the importance of studying LSECs in liver disease. However, during chronic liver diseases, LSECs undergo dysfunction, leading to their capillarization, loss of fenestrations, and promotion of pro-fibrotic signaling pathways such as Transforming growth factor-beta (TGF-β), which subsequently activates HSCs and contributes to the progression of liver fibrosis. The review also discusses the dynamic interaction between LSECs, HSCs, and other hepatic cells during the progression of liver diseases, emphasizing how changes in LSEC phenotype contribute to liver scarring and fibrosis. Furthermore, it highlights the potential of LSECs as therapeutic targets for modulating immune responses and preventing fibrosis in liver diseases. By restoring LSECs' function and targeting pathways associated with their dysfunction, novel therapies could be developed to halt or reverse liver disease progression. The findings of this review reinforce the importance of LSECs in liver pathology and suggest that they hold significant promises as targets for future treatment strategies aimed at addressing chronic liver diseases.
Collapse
Affiliation(s)
- Munish Puri
- Onco-Immunology, Magnit Global, Folsom, CA 95630, USA
| | - Snehal Sonawane
- Department of Pathology, University of Illinois, Chicago, IL 60612, USA;
| |
Collapse
|
3
|
Kawasaki T, Iwasaki T, Watanabe T, Yamada M, Maeda N, Hasegawa Y, Takahashi N, Kobayashi R. Injury and Fibrosis at the Myoaponeurotic Junction of Pectoralis Major and Supracoracoideus Muscles in Broiler Chickens. J Poult Sci 2025; 62:2025014. [PMID: 40190448 PMCID: PMC11966008 DOI: 10.2141/jpsa.2025014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/28/2025] [Indexed: 04/09/2025] Open
Abstract
In this study, we aimed to identify the mechanism responsible for tissue degeneration and fibrosis in pectoral and supracoracoideus muscles. Ten chickens fed ad libitum broiler feed (Bro) were compared to 10 chickens fed breeding feed (Adj), which has lower metabolizable energy. The median body weight of Bro and Adj birds at 48 days of age was 4.9 and 0.9 kg, respectively. In Bro birds, hind legs were farther apart and tended to abduct, whereas their standing posture was often tilted forward, making them unstable. The two Bro males were heavier than the average, markedly less stable when standing or walking, and often flapped their wings vigorously to maintain balance. Myofiber damage and fibrosis were observed at the myoaponeurotic junction of the pectoralis major and supracoracoideus muscles in Bro birds. Myofiber damage and fibrosis were detected also in areas distal to the myoaponeurotic junction in the two heavier males but were otherwise less evident. By contrast, in Adj birds, almost no degeneration or fibrosis of muscle tissue was observed at the myoaponeurotic junction. In addition, the supracoracoideus muscle of one of the Bro birds showed coagulative necrosis of muscle tissue, surrounded by prominent fibrous tissue. Numerous incompletely formed blood vessels with irregular shapes and prominent branching proliferated in the fibrous tissue. These findings suggest that injury at the myoaponeurotic junction and abnormal capillary proliferation may be closely related to the formation of lesions, along with prominent fibrosis in the pectoralis major and supracoracoideus muscles.
Collapse
Affiliation(s)
- Takeshi Kawasaki
- Research Office Concerning the Health of Humans and Birds,
Abashiri, 099-3119, Japan
| | - Tomohito Iwasaki
- Department of Food Science and Human Wellness, Rakuno Gakuen
University, Ebetsu, 069-8501, Japan
| | - Takafumi Watanabe
- Department of Veterinary Anatomy, School of Veterinary
Medicine, Rakuno Gakuen University, Ebetsu, 069-8501, Japan
| | - Michi Yamada
- Department of Sustainable Agriculture, Rakuno Gakuen
University, Ebetsu, 069-8501, Japan
| | - Naoyuki Maeda
- Department of Food Science and Human Wellness, Rakuno Gakuen
University, Ebetsu, 069-8501, Japan
| | - Yasuhiro Hasegawa
- Department of Food Science and Human Wellness, Rakuno Gakuen
University, Ebetsu, 069-8501, Japan
| | - Naoki Takahashi
- Department of Veterinary Anatomy, School of Veterinary
Medicine, Rakuno Gakuen University, Ebetsu, 069-8501, Japan
| | - Ryosuke Kobayashi
- Department of Veterinary Anatomy, School of Veterinary
Medicine, Rakuno Gakuen University, Ebetsu, 069-8501, Japan
| |
Collapse
|
4
|
Bruneau A, Hammerich L. Slamming hepatocellular carcinoma: targeting immunosuppressive macrophages via SLAMF7 reprograms the tumor microenvironment. Transl Cancer Res 2024; 13:6995-7001. [PMID: 39816568 PMCID: PMC11730195 DOI: 10.21037/tcr-24-876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/15/2024] [Indexed: 01/18/2025]
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer and one of the leading causes of cancer-related deaths worldwide due to limited treatment options. The tumor microenvironment (TME), which is usually immunosuppressive in HCC, appears to be a decisive factor for response to immunotherapy and strategies aimed at inducing a more inflamed TME hold promise to overcome resistance to immunotherapy. Within the TME, the interplay of various cell types determines whether immunotherapy is successful. Liver macrophages, in particular tumor associated macrophages (TAMs), are known to play a crucial role in tumor progression and represent potential future therapeutic targets. The presence of C-C motif chemokine receptor 2 (CCR2) expressing macrophages is known to be associated with pathogenic angiogenesis and bad prognosis for HCC patients. A recent study published in Cancer Research describes how immunosuppressive macrophages in the TME can be repolarized through targeting Signaling Lymphocyte Activation Molecule Family member 7 (SLAMF7)-regulated CC-chemokine ligand 2 (CCL2) signaling, which sensitizes HCC tumors to immunotherapy in a mouse model. This mini-review gives a brief overview about the current knowledge on SLAMF7 in the context of anti-cancer immunity and how the recent findings could be integrated into new therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Alix Bruneau
- Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
5
|
Mata-Martínez E, Ramírez-Ledesma MG, Vázquez-Victorio G, Hernández-Muñoz R, Díaz-Muñoz M, Vázquez-Cuevas FG. Purinergic Signaling in Non-Parenchymal Liver Cells. Int J Mol Sci 2024; 25:9447. [PMID: 39273394 PMCID: PMC11394727 DOI: 10.3390/ijms25179447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Purinergic signaling has emerged as an important paracrine-autocrine intercellular system that regulates physiological and pathological processes in practically all organs of the body. Although this system has been thoroughly defined since the nineties, recent research has made substantial advances regarding its role in aspects of liver physiology. However, most studies have mainly targeted the entire organ, 70% of which is made up of parenchymal cells or hepatocytes. Because of its physiological role, the liver is exposed to toxic metabolites, such as xenobiotics, drugs, and fatty acids, as well as to pathogens such as viruses and bacteria. Under injury conditions, all cell types within the liver undergo adaptive changes. In this context, the concentration of extracellular ATP has the potential to increase dramatically. Indeed, this purinergic response has not been studied in sufficient detail in non-parenchymal liver cells. In the present review, we systematize the physiopathological adaptations related to the purinergic system in chronic liver diseases of non-parenchymal liver cells, such as hepatic stellate cells, Kupffer cells, sinusoidal endothelial cells, and cholangiocytes. The role played by non-parenchymal liver cells in these circumstances will undoubtedly be strategic in understanding the regenerative activities that support the viability of this organ under stressful conditions.
Collapse
Affiliation(s)
- Esperanza Mata-Martínez
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - María Guadalupe Ramírez-Ledesma
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| | - Genaro Vázquez-Victorio
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior S/N, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Rolando Hernández-Muñoz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City 04510, Mexico
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| | - Francisco G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Querétaro 76230, Mexico
| |
Collapse
|
6
|
Gao H, Bianba Z, Mo X, Hu W, Feng Z, Zhou F, Zhang T. Receptor Tyrosine Kinase Signaling Involves Echinococcus-Host Intercommunication: A Potential Therapeutic Target in Hepatic Echinococcosis. Trop Med Infect Dis 2024; 9:175. [PMID: 39195613 PMCID: PMC11360685 DOI: 10.3390/tropicalmed9080175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Echinococcosis, one of the most serious and life-threatening parasitic forms of zoonosis worldwide, is caused by the larvae of Echinococcus granulosus (E. granulosus) and Echinococcus multilocularis (E. multilocularis). Various drugs are being applied clinically to treat zoonosis; however, their therapeutic efficacy remains a great challenge, especially with albendazole as the preferred drug of choice. Receptor tyrosine kinase (RTK) signaling controls normal cellular proliferation, differentiation, and metabolism in humans and mammals, which are intermediate hosts of E. granulosus and E. multilocularis. Disruption of RTK signaling can cause various forms of carcinogenesis and exacerbate the progression of certain forms of parasitic disease. As a result, a significant number of studies on tyrosine kinase inhibitors (TKIs) have been conducted for the treatment of cancer and parasitic infection, with some TKIs already approved for clinical use for cancer. Notably, RTK signaling has been identified in the parasites E. granulosus and E. multilocularis; however, the mechanisms of RTK signaling response in Echinococcus-host intercommunication are not fully understood. Thus, understanding the RTK signaling response in Echinococcus-host intercommunication and the potential effect of RTK signaling is crucial for identifying new drug targets for echinococcosis. The present review illustrates that RTK signaling in the host is over-activated following infection by E. granulosus or E. multilocularis and can further facilitate the development of metacestodes in vitro. In addition, some TKIs exert strong parasitostatic effects on E. granulosus or E. multilocularis, both in vitro and/or in vivo, through downregulation of RTK signaling molecules. The summarized findings suggest that RTK signaling may be a promising drug target and that TKIs could be potential anti-Echinococcus drugs warranting further research.
Collapse
Affiliation(s)
- Haijun Gao
- Chengdu Fifth People’s Hospital (Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine; The Second Clinical Medical College), Chengdu 611130, China;
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; National Health Commission Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai 200025, China; (X.M.); (W.H.); (Z.F.)
| | - Zhuoma Bianba
- National Health Commission Key Laboratory of Echinococcosis Prevention and Control, Xizang Center for Disease Control and Prevention, Lhasa 850000, China;
| | - Xiaojin Mo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; National Health Commission Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai 200025, China; (X.M.); (W.H.); (Z.F.)
- National Health Commission Key Laboratory of Echinococcosis Prevention and Control, Xizang Center for Disease Control and Prevention, Lhasa 850000, China;
| | - Wei Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; National Health Commission Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai 200025, China; (X.M.); (W.H.); (Z.F.)
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Zheng Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; National Health Commission Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai 200025, China; (X.M.); (W.H.); (Z.F.)
| | - Fangye Zhou
- Chengdu Fifth People’s Hospital (Affiliated Fifth People’s Hospital of Chengdu University of Traditional Chinese Medicine; The Second Clinical Medical College), Chengdu 611130, China;
| | - Ting Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases; National Health Commission Key Laboratory of Parasite and Vector Biology; WHO Collaborating Center for Tropical Diseases; National Center for International Research on Tropical Diseases, Shanghai 200025, China; (X.M.); (W.H.); (Z.F.)
- National Health Commission Key Laboratory of Echinococcosis Prevention and Control, Xizang Center for Disease Control and Prevention, Lhasa 850000, China;
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
7
|
Zheng S, Xue C, Li S, Zao X, Li X, Liu Q, Cao X, Wang W, Qi W, Du H, Zhang P, Ye Y. Liver cirrhosis: current status and treatment options using western or traditional Chinese medicine. Front Pharmacol 2024; 15:1381476. [PMID: 39081955 PMCID: PMC11286405 DOI: 10.3389/fphar.2024.1381476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Liver cirrhosis arises from liver fibrosis and necroinflammation caused by various mechanisms of hepatic injury. It is a prevalent condition in clinical practice characterized by hepatocellular dysfunction, portal hypertension, and associated complications. Despite its common occurrence, the etiology and pathogenesis of liver cirrhosis remain incompletely understood, posing a significant health threat. Effective prevention of its onset and progression is paramount in medical research. Symptoms often include discomfort in the liver area, while complications such as sarcopenia, hepatic encephalopathy, ascites, upper gastrointestinal bleeding, and infection can arise. While the efficacy of Western medicine in treating liver cirrhosis is uncertain, Chinese medicine offers distinct advantages. This review explores advancements in liver cirrhosis treatment encompassing non-pharmacological and pharmacological modalities. Chinese medicine interventions, including Chinese medicine decoctions, Chinese patent medicines, and acupuncture, exhibit notable efficacy in cirrhosis reversal and offer improved prognoses. Nowadays, the combination of Chinese and Western medicine in the treatment of liver cirrhosis also has considerable advantages, which is worthy of further research and clinical promotion. Standardized treatment protocols based on these findings hold significant clinical implications.
Collapse
Affiliation(s)
- Shihao Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Chengyuan Xue
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Size Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyao Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Xu Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Wenying Qi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Hongbo Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Peng Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yongan Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
He S, Luo Y, Ma W, Wang X, Yan C, Hao W, Fang Y, Su H, Lai B, Liu J, Xiong Y, Bai T, Ren X, Liu E, Han H, Wu Y, Yuan Z, Wang Y. Endothelial POFUT1 controls injury-induced liver fibrosis by repressing fibrinogen synthesis. J Hepatol 2024; 81:135-148. [PMID: 38460791 DOI: 10.1016/j.jhep.2024.02.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND & AIMS NOTCH signaling in liver sinusoidal endothelial cells (LSECs) regulates liver fibrosis, a pathological feature of chronic liver diseases. POFUT1 is an essential regulator of NOTCH signaling. Here, we investigated the role of LSEC-expressed POFUT1 in liver fibrosis. METHODS Endothelial-specific Pofut1 knockout mice were generated and experimental liver fibrosis was induced by chronic carbon tetrachloride exposure or common bile duct ligation. Liver samples were assessed by ELISA, histology, electron microscopy, immunostaining and RNA in situ hybridization. LSECs and hepatic stellate cells (HSCs) were isolated for gene expression analysis by RNA sequencing, qPCR, and western blotting. Signaling crosstalk between LSECs and HSCs was investigated by treating HSCs with supernatant from LSEC cultures. Liver single-cell RNA sequencing datasets from patients with cirrhosis and healthy individuals were analyzed to evaluate the clinical relevance of gene expression changes observed in mouse studies. RESULTS POFUT1 loss promoted injury-induced LSEC capillarization and HSC activation, leading to aggravated liver fibrosis. RNA sequencing analysis revealed that POFUT1 deficiency upregulated fibrinogen expression in LSECs. Consistently, fibrinogen was elevated in LSECs of patients with cirrhosis. HSCs treated with supernatant from LSECs of Pofut1 null mice showed exacerbated activation compared to those treated with supernatant from control LSECs, and this effect was attenuated by knockdown of fibrinogen or by pharmacological inhibition of fibrinogen receptor signaling, altogether suggesting that LSEC-derived fibrinogen induced the activation of HSCs. Mechanistically, POFUT1 loss augmented fibrinogen expression by enhancing NOTCH/HES1/STAT3 signaling. CONCLUSIONS Endothelial POFUT1 prevents injury-induced liver fibrosis by repressing the expression of fibrinogen, which functions as a profibrotic paracrine signal to activate HSCs. Therapies targeting the POFUT1/fibrinogen axis offer a promising strategy for the prevention and treatment of fibrotic liver diseases. IMPACT AND IMPLICATIONS Paracrine signals produced by liver vasculature play a major role in the development of liver fibrosis, which is a pathological hallmark of most liver diseases. Identifying those paracrine signals is clinically relevant in that they may serve as therapeutic targets. In this study, we discovered that genetic deletion of Pofut1 aggravated experimental liver fibrosis in mouse models. Moreover, fibrinogen was identified as a downstream target repressed by Pofut1 in liver endothelial cells and functioned as a novel paracrine signal that drove liver fibrosis. In addition, fibrinogen was found to be relevant to cirrhosis and may serve as a potential therapeutic target for this devastating human disease.
Collapse
Affiliation(s)
- Shan He
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Stomatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuru Luo
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wangge Ma
- Cardiovascular Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaoke Wang
- Cardiovascular Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chengrong Yan
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenyang Hao
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuan Fang
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hongyu Su
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Baochang Lai
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Junhui Liu
- Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ying Xiong
- Cardiovascular Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ting Bai
- Cardiovascular Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiaoyong Ren
- Department of Stomatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Enqi Liu
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hua Han
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancer and Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yue Wu
- Cardiovascular Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Cardiometabolic Innovation Center, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Zuyi Yuan
- Cardiovascular Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Cardiometabolic Innovation Center, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Yidong Wang
- The Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Cardiovascular Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Cardiometabolic Innovation Center, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Cardiology, Wenling First People's Hospital, The Affiliated Hospital of Wenzhou Medical University, Wenling, Zhejiang, China.
| |
Collapse
|
9
|
Fu L, Guldiken N, Remih K, Karl AS, Preisinger C, Strnad P. Serum/Plasma Proteome in Non-Malignant Liver Disease. Int J Mol Sci 2024; 25:2008. [PMID: 38396688 PMCID: PMC10889128 DOI: 10.3390/ijms25042008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
The liver is the central metabolic organ and produces 85-90% of the proteins found in plasma. Accordingly, the plasma proteome is an attractive source of liver disease biomarkers that reflects the different cell types present in this organ, as well as the processes such as responses to acute and chronic injury or the formation of an extracellular matrix. In the first part, we summarize the biomarkers routinely used in clinical evaluations and their biological relevance in the different stages of non-malignant liver disease. Later, we describe the current proteomic approaches, including mass spectrometry and affinity-based techniques, that allow a more comprehensive assessment of the liver function but also require complex data processing. The many approaches of analysis and interpretation and their potential caveats are delineated. While these advances hold the promise to transform our understanding of liver diseases and support the development and validation of new liver-related drugs, an interdisciplinary collaboration is needed.
Collapse
Affiliation(s)
- Lei Fu
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (L.F.); (N.G.); (K.R.); (A.S.K.)
| | - Nurdan Guldiken
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (L.F.); (N.G.); (K.R.); (A.S.K.)
| | - Katharina Remih
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (L.F.); (N.G.); (K.R.); (A.S.K.)
| | - Anna Sophie Karl
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (L.F.); (N.G.); (K.R.); (A.S.K.)
| | - Christian Preisinger
- Proteomics Facility, Interdisciplinary Centre for Clinical Research (IZKF), Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany;
| | - Pavel Strnad
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (L.F.); (N.G.); (K.R.); (A.S.K.)
| |
Collapse
|