1
|
Gemcitabine resistance of pancreatic cancer cells is mediated by IGF1R dependent upregulation of CD44 expression and isoform switching. Cell Death Dis 2022; 13:682. [PMID: 35931675 PMCID: PMC9355957 DOI: 10.1038/s41419-022-05103-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 06/27/2022] [Accepted: 07/14/2022] [Indexed: 01/21/2023]
Abstract
Chemoresistance in pancreatic cancer cells may be caused by the expansion of inherently resistant cancer cells or by the adaptive plasticity of initially sensitive cancer cells. We investigated how CD44 isoforms switching contributed to gemcitabine resistance. Treating CD44 null/low single-cell clones with increasing amounts of gemcitabine caused an increase in expression of CD44 and development of gemcitabine resistant (GR) cells. Drug sensitivity, invasiveness, and EMT process was evaluated by MTT, Matrigel invasion assays, and western blots. Genetic knockdown and pharmacological inhibitors were used to examine the roles of CD44 and IGF1R in mediating gemcitabine resistance. CD44 promoter activity and its interactive EMT-related transcription factors were evaluated by luciferase reporter assay and chromatin immunoprecipitation assay. Kaplan-Meier curve was created by log-rank test to reveal the clinical relevance of CD44 and IGF1R expression in patients. We found silence of CD44 in GR cells partially restored E-cadherin expression, reduced ZEB1 expression, and increased drug sensitivity. The gemcitabine-induced CD44 expressing and isoform switching were associated with an increase in nuclear accumulation of phosphor-cJun, Ets1, and Egr1 and binding of these transcription factors to the CD44 promoter. Gemcitabine treatment induced phosphorylation of IGF1R and increased the expression of phosphor-cJun, Ets1, and Egr1 within 72 h. Stimulation or suppression of IGF1R signaling or its downstream target promoted or blocked CD44 promoter activity. Clinically, patients whose tumors expressed high levels of CD44/IGF1R showed a poor prognosis. This study suggests that IGF1R-dependent CD44 isoform switching confers pancreatic cancer cells to undergo an adaptive change in response to gemcitabine and provides the basis for improved targeted therapy of pancreatic cancer.
Collapse
|
2
|
Le Minh G, Reginato MJ. Role of O-GlcNAcylation on cancer stem cells: Connecting nutrient sensing to cell plasticity. Adv Cancer Res 2022; 157:195-228. [PMID: 36725109 PMCID: PMC9895886 DOI: 10.1016/bs.acr.2022.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tumor growth and metastasis can be promoted by a small sub-population of cancer cells, termed cancer stem-like cells (CSCs). While CSCs possess capability in self-renewing and differentiating, the hierarchy of CSCs during tumor growth is highly plastic. This plasticity in CSCs fate and function can be regulated by signals from the tumor microenvironment. One emerging pathway in CSCs that connects the alteration in microenvironment and signaling network in cancer cells is the hexosamine biosynthetic pathway (HBP). The final product of HBP, UDP-N-acetylglucosamine (UDP-GlcNAc), is utilized for glycosylating of membrane and secreted proteins, but also nuclear and cytoplasmic proteins by the post-translational modification O-GlcNAcylation. O-GlcNAcylation and its enzyme, O-GlcNAc transferase (OGT), are upregulated in nearly all cancers and been linked to regulate many cancer cell phenotypes. Recent studies have begun to connect OGT and O-GlcNAcylation to regulation of CSCs. In this review, we will discuss the emerging role of OGT and O-GlcNAcylation in regulating fate and plasticity of CSCs, as well as the potential in targeting OGT/O-GlcNAcylation in CSCs.
Collapse
Affiliation(s)
- Giang Le Minh
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Mauricio J Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States; Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
3
|
Han X, Zhang W, Gao H, Li T, Xu H, Li H, Li P, Wang X, Yu X, Wang W, Liu L. Neoadjuvant chemotherapy endows CD9 with prognostic value that differs between tumor and stromal areas in patients with pancreatic cancer. J Clin Lab Anal 2022; 36:e24517. [PMID: 35622458 PMCID: PMC9279986 DOI: 10.1002/jcla.24517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/13/2022] [Accepted: 05/12/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The selective pressure imposed by chemotherapy creates a barrier to tumor eradication and an opportunity for metastasis and recurrence. As a newly discovered stemness marker of pancreatic ductal adenocarcinoma (PDAC), the impact of CD9 on tumor progression and patient's prognosis remain controversial. METHODS A total of 179 and 211 PDAC patients who underwent surgical resection with or without neoadjuvant chemotherapy, respectively, were recruited for immunohistochemical analyses of CD9 expression in both tumor and stromal areas prior to statistical analyses to determine the prognostic impact and predictive accuracy of CD9. RESULTS The relationship between CD9 and prognostic indicators was not significant in the non-neoadjuvant group. Nevertheless, CD9 expression in both tumor (T-CD9) and stromal areas (S-CD9) was significantly correlated with the clinicopathological features in the neoadjuvant group. High levels of T-CD9 were significantly associated with worse OS (p = 0.005) and RFS (p = 0.007), while positive S-CD9 showed the opposite results (OS: p = 0.024; RFS: p = 0.008). Cox regression analyses identified CD9 in both areas as an independent prognostic factor. The T&S-CD9 risk-level system was used to stratify patients with different survival levels. The combination of T&S-CD9 risk level and TNM stage were accurate predictors of OS (C-index: 0.676; AIC: 512.51) and RFS (C-index: 0.680; AIC: 519.53). The calibration curve of the nomogram composed of the combined parameters showed excellent predictive consistency for 1-year RFS. These results were verified using a validation cohort. CONCLUSION Neoadjuvant chemotherapy endows CD9 with a significant prognostic value that differs between tumor and stromal areas in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Xuan Han
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Wu‐Hu Zhang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - He‐Li Gao
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Tian‐Jiao Li
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Hua‐Xiang Xu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Hao Li
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Peng‐Cheng Li
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Xu Wang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Xian‐Jun Yu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Wen‐Quan Wang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| | - Liang Liu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical College, Fudan UniversityShanghaiChina
- Shanghai Pancreatic Cancer InstituteShanghaiChina
- Pancreatic Cancer InstituteFudan UniversityShanghaiChina
| |
Collapse
|
4
|
Koltai T, Reshkin SJ, Carvalho TMA, Di Molfetta D, Greco MR, Alfarouk KO, Cardone RA. Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma: A Physiopathologic and Pharmacologic Review. Cancers (Basel) 2022; 14:2486. [PMID: 35626089 PMCID: PMC9139729 DOI: 10.3390/cancers14102486] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive tumor with a poor prognosis and inadequate response to treatment. Many factors contribute to this therapeutic failure: lack of symptoms until the tumor reaches an advanced stage, leading to late diagnosis; early lymphatic and hematic spread; advanced age of patients; important development of a pro-tumoral and hyperfibrotic stroma; high genetic and metabolic heterogeneity; poor vascular supply; a highly acidic matrix; extreme hypoxia; and early development of resistance to the available therapeutic options. In most cases, the disease is silent for a long time, andwhen it does become symptomatic, it is too late for ablative surgery; this is one of the major reasons explaining the short survival associated with the disease. Even when surgery is possible, relapsesare frequent, andthe causes of this devastating picture are the low efficacy ofand early resistance to all known chemotherapeutic treatments. Thus, it is imperative to analyze the roots of this resistance in order to improve the benefits of therapy. PDAC chemoresistance is the final product of different, but to some extent, interconnected factors. Surgery, being the most adequate treatment for pancreatic cancer and the only one that in a few selected cases can achieve longer survival, is only possible in less than 20% of patients. Thus, the treatment burden relies on chemotherapy in mostcases. While the FOLFIRINOX scheme has a slightly longer overall survival, it also produces many more adverse eventsso that gemcitabine is still considered the first choice for treatment, especially in combination with other compounds/agents. This review discusses the multiple causes of gemcitabine resistance in PDAC.
Collapse
Affiliation(s)
| | - Stephan Joel Reshkin
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Tiago M. A. Carvalho
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Maria Raffaella Greco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| | - Khalid Omer Alfarouk
- Zamzam Research Center, Zamzam University College, Khartoum 11123, Sudan;
- Alfarouk Biomedical Research LLC, Temple Terrace, FL 33617, USA
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70126 Bari, Italy; (T.M.A.C.); (D.D.M.); (M.R.G.); (R.A.C.)
| |
Collapse
|
5
|
Toki S, Yoshimaru T, Matsushita Y, Aihara H, Ono M, Tsuneyama K, Sairyo K, Katagiri T. The survival and proliferation of osteosarcoma cells are dependent on the mitochondrial BIG3-PHB2 complex formation. Cancer Sci 2021; 112:4208-4219. [PMID: 34363714 PMCID: PMC8486206 DOI: 10.1111/cas.15099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022] Open
Abstract
Previous studies reported the critical role of the brefeldin A-inhibited guanine nucleotide exchange protein 3-prohibitin 2 (BIG3-PHB2) complex in modulating estrogen signaling activation in breast cancer cells, yet its pathophysiological roles in osteosarcoma (OS) cells remain elusive. Here, we report a novel function of BIG3-PHB2 in OS malignancy. BIG3-PHB2 complexes were localized mainly in mitochondria in OS cells, unlike in estrogen-dependent breast cancer cells. Depletion of endogenous BIG3 expression by small interfering RNA (siRNA) treatment led to significant inhibition of OS cell growth. Disruption of BIG3-PHB2 complex formation by treatment with specific peptide inhibitor also resulted in significant dose-dependent suppression of OS cell growth, migration, and invasion resulting from G2/M-phase arrest and in PARP cleavage, ultimately leading to PARP-1/apoptosis-inducing factor (AIF) pathway activation-dependent apoptosis in OS cells. Subsequent proteomic and bioinformatic pathway analyses revealed that disruption of the BIG3-PHB2 complex might lead to downregulation of inner mitochondrial membrane protein complex activity. Our findings indicate that the mitochondrial BIG3-PHB2 complex might regulate PARP-1/AIF pathway-dependent apoptosis during OS cell proliferation and progression and that disruption of this complex may be a promising therapeutic strategy for OS.
Collapse
Affiliation(s)
- Shunichi Toki
- Division of Genome Medicine, Advanced Institute of Medical Sciences, Tokushima University, Tokushima, Japan.,Department of Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tetsuro Yoshimaru
- Division of Genome Medicine, Advanced Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Yosuke Matsushita
- Division of Genome Medicine, Advanced Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Hitoshi Aihara
- Division of Genome Medicine, Advanced Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| | - Masaya Ono
- Department of Proteomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichi Sairyo
- Department of Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Advanced Institute of Medical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
6
|
Ray P, Dutta D, Haque I, Nair G, Mohammed J, Parmer M, Kale N, Orr M, Jain P, Banerjee S, Reindl KM, Mallik S, Kambhampati S, Banerjee SK, Quadir M. pH-Sensitive Nanodrug Carriers for Codelivery of ERK Inhibitor and Gemcitabine Enhance the Inhibition of Tumor Growth in Pancreatic Cancer. Mol Pharm 2020; 18:87-100. [PMID: 33231464 DOI: 10.1021/acs.molpharmaceut.0c00499] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a metabolic disorder, remains one of the leading cancer mortality sources worldwide. An initial response to treatments, such as gemcitabine (GEM), is often followed by emergent resistance reflecting an urgent need for alternate therapies. The PDAC resistance to GEM could be due to ERK1/2 activity. However, successful ERKi therapy is hindered due to low ligand efficiency, poor drug delivery, and toxicity. In this study, to overcome these limitations, we have designed pH-responsive nanoparticles (pHNPs) with a size range of 100-150 nm for the simultaneous delivery of ERKi (SCH 772984) and GEM with tolerable doses. These pHNPs are polyethylene glycol (PEG)-containing amphiphilic polycarbonate block copolymers with tertiary amine side chains. They are systemically stable and capable of improving in vitro and in vivo drug delivery at the cellular environment's acidic pH. The functional analysis indicates that the nanomolar doses of ERKi or GEM significantly decreased the 50% growth inhibition (IC50) of PDAC cells when encapsulated in pHNPs compared to free drugs. The combination of ERKi with GEM displayed a synergistic inhibitory effect. Unexpectedly, we uncover that the minimum effective dose of ERKi significantly promotes GEM activities on PDAC cells. Furthermore, we found that pHNP-encapsulated combination therapy of ERKi with GEM was superior to unencapsulated combination drug therapy. Our findings, thus, reveal a simple, yet efficient, drug delivery approach to overcome the limitations of ERKi for clinical applications and present a new model of sensitization of GEM by ERKi with no or minimal toxicity.
Collapse
Affiliation(s)
- Priyanka Ray
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Debasmita Dutta
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Inamul Haque
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri 64128, United States.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Gauthami Nair
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Jiyan Mohammed
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Meredith Parmer
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Narendra Kale
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Megan Orr
- Department of Statistics, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Pooja Jain
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri 64128, United States
| | - Snigdha Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri 64128, United States.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Katie M Reindl
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Suman Kambhampati
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri 64128, United States
| | - Sushanta K Banerjee
- Cancer Research Unit, VA Medical Center, Kansas City, Missouri 64128, United States.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
7
|
Qin T, Cheng L, Xiao Y, Qian W, Li J, Wu Z, Wang Z, Xu Q, Duan W, Wong L, Wu E, Ma Q, Ma J. NAF-1 Inhibition by Resveratrol Suppresses Cancer Stem Cell-Like Properties and the Invasion of Pancreatic Cancer. Front Oncol 2020; 10:1038. [PMID: 32766132 PMCID: PMC7378530 DOI: 10.3389/fonc.2020.01038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Resveratrol is a natural polyphenolic compound with multiple biological effects, e.g., proliferation inhibition, anti-oxidation, and neuroprotection. Besides that, studies have shown that resveratrol inhibits tumor growth and migration, as well as epithelial–mesenchymal transition (EMT). However, its molecular mechanisms in tumor progression are not fully understood. Nutrient-deprivation autophagy factor-1 (NAF-1) is mainly found in the endoplasmic reticulum and mitochondrial outer membrane. It is an important genetic locus for regulating oxidative stress and autophagy. The molecular mechanism of NAF-1 in pancreatic cancer is currently unclear. The current study found that NAF-1 is expressed in pancreatic cancer tissue and correlated with the progression of pancreatic cancer. Furthermore, we found that NAF-1 inhibition significantly inhibits the stem cell characteristics and the invasion and migration abilities of pancreatic cancer cells. In a subcutaneous xenograft model of pancreatic cancer in nude mice, resveratrol inhibited the expression of NAF-1, thereby inhibiting tumor growth. Taken together, resveratrol could be an effective anti-tumor drug, and NAF-1 may be a rational therapeutic target.
Collapse
Affiliation(s)
- Tao Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liang Cheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Xiao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Weikun Qian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zheng Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qinhong Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wanxing Duan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lucas Wong
- Department of Oncology, Baylor Scott & White Health, Temple, TX, United States.,Department of Surgery, Texas A&M University College of Medicine, Temple, TX, United States
| | - Erxi Wu
- Department of Surgery, Texas A&M University College of Medicine, Temple, TX, United States.,Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, United States.,Neuroscience Institute, Baylor Scott & White Health, Temple, TX, United States.,Department of Pharmaceutical Sciences, Texas A&M University College of Pharmacy, College Station, TX, United States.,LIVESTRONG Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States.,Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiguang Ma
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
8
|
Madden EC, Gorman AM, Logue SE, Samali A. Tumour Cell Secretome in Chemoresistance and Tumour Recurrence. Trends Cancer 2020; 6:489-505. [PMID: 32460003 DOI: 10.1016/j.trecan.2020.02.020] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/20/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022]
Abstract
Chemoresistance is a major factor driving tumour relapse and the high rates of cancer-related deaths. Understanding how cancer cells overcome chemotherapy-induced cell death is critical in promoting patient survival. One emerging mechanism of chemoresistance is the tumour cell secretome (TCS), an array of protumorigenic factors released by tumour cells. Chemotherapy exposure can also alter the composition of the TCS, known as therapy-induced TCS, and can promote tumour relapse and the formation of an immunosuppressive tumour microenvironment (TME). Here, we outline how the TCS can protect cancer cells from chemotherapy-induced cell death. We also highlight recent evidence describing how therapy-induced TCS can impact cancer stem cell (CSC) expansion and tumour-associated immune cells to enable tumour regrowth and antitumour immunity.
Collapse
Affiliation(s)
- Emma C Madden
- Apoptosis Research Centre, NUI Galway, Galway, Ireland; School of Natural Sciences, NUI Galway, Galway, Ireland
| | - Adrienne M Gorman
- Apoptosis Research Centre, NUI Galway, Galway, Ireland; School of Natural Sciences, NUI Galway, Galway, Ireland
| | - Susan E Logue
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
| | - Afshin Samali
- Apoptosis Research Centre, NUI Galway, Galway, Ireland; School of Natural Sciences, NUI Galway, Galway, Ireland.
| |
Collapse
|
9
|
Tajima H, Ohta T, Okazaki M, Yamaguchi T, Ohbatake Y, Okamoto K, Nakanuma S, Kinoshita J, Makino I, Nakamura K, Miyashita T, Takamura H, Ninomiya I, Fushida S, Nakamura H. Neoadjuvant chemotherapy with gemcitabine-based regimens improves the prognosis of node positive resectable pancreatic head cancer. Mol Clin Oncol 2019; 11:157-166. [PMID: 31281650 DOI: 10.3892/mco.2019.1867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/16/2019] [Indexed: 01/02/2023] Open
Abstract
The effectiveness of preoperative (neoadjuvant) chemotherapy (NAC) for resectable pancreatic ductal adenocarcinoma (PDAC) remains unclear. The present study retrospectively evaluated the efficacy of NAC with gemcitabine (GEM)-based regimens or GEM monotherapy for resectable PDAC. Between 2006 and 2015, NAC with GEM was performed in 52 cases (head 31, and body and tail 21) and compared with 34 resection-only cases serving as controls (head 20, and body and tail 14). According to the Response Evaluation Criteria In Solid Tumors guidelines, the treatment effect was a partial response in 5 cases, stable disease in 45 cases, and progressive disease in 2 cases. Maximum standardized uptake values and carbohydrate antigen (CA19-9) values were significantly reduced after preoperative chemotherapy. Using the Evans grading system, the treatment effect was grade I in 31 patients, grade IIa in 8, and grade IIb in 3 cases. There were significant differences in the overall survival rate between the NAC and control groups, only in the patients with node-positive pancreatic head cancer. Significantly higher CA19-9 values in peripheral blood and higher lymph node metastasis and plexus invasion rates were observed in early-recurring cases within a year. The preoperative CA 19-9 cutoff value as an early recurrence risk factor was calculated as 30 U/ml in the NAC group and 88 U/ml in the control group. NAC with GEM prolonged survival in patients with node-positive pancreatic head cancer. High CA19-9 values before operation, lymph node metastases and plexus invasion were risk factors for early tumor recurrence after surgery. Preoperative chemotherapy would be necessary for resectable pancreatic head cancer as lymph node metastasis was observed in >60% with resectable PDAC. Moreover, if normalization of CA19-9 values is not achieved with NAC, extension of preoperative chemotherapy should be considered as for borderline resectable PDAC cases.
Collapse
Affiliation(s)
- Hidehiro Tajima
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Tetsuo Ohta
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Mitsuyoshi Okazaki
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Takahisa Yamaguchi
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Yoshinao Ohbatake
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Koichi Okamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Shinichi Nakanuma
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Jun Kinoshita
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Isamu Makino
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Keishi Nakamura
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Tomoharu Miyashita
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Hiroyuki Takamura
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Itasu Ninomiya
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Sachio Fushida
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Hiroyuki Nakamura
- Department of Environmental and Preventive Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| |
Collapse
|
10
|
Sugimoto M, Abe K, Hayashi M, Takagi T, Suzuki R, Konno N, Asama H, Sato Y, Irie H, Watanabe K, Nakamura J, Kikuchi H, Waragai Y, Takasumi M, Hashimoto M, Hikichi T, Nozawa Y, Ohira H. The efficacy of serum cell death biomarkers for diagnosing biliary tract cancer. Sci Rep 2018; 8:16997. [PMID: 30451962 PMCID: PMC6243019 DOI: 10.1038/s41598-018-35278-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022] Open
Abstract
In this study, we determined the efficacy of the cell death biomarker cytokeratin 18 for diagnosing biliary tract cancer (BTC). We recruited 36 patients with BTC (Malignant group) and 45 patients with benign biliary tract disease (Benign group) for this study. We used M30 and M65 as cell death biomarkers. M30 levels indicate apoptosis, and M65 levels indicate both apoptosis and necrosis. M30 and M65 levels were significantly higher in the Malignant group than in the Benign group (142.4 ± 117.0 vs 48.9 ± 71.2 U/l, P < 0.001; 1513.3 ± 837.4 vs 882.2 ± 831.2 U/l, P = 0.001). The diagnosability of M30 was the highest of the four markers (CEA, CA19-9, M30, M65) (cut-off value: 74.429 U/l, sensitivity: 72.2%, specificity: 77.1%, AUC: 0.771). The sensitivity of M30 (cut-off value: 74.429 U/l) was significantly higher than that of biliary cytology (76% (19/25) vs 12% (3/25), P < 0.001), and the accuracy of M30 was significantly higher than that of biliary cytology (78.3% (36/46) vs 52.2% (24/46), P = 0.015). The sensitivity of M30 (cut-off value: 74.429 U/l) was significantly higher than that of biliary cytology and brush cytology (72.4% (21/29) vs 24.1% (7/29), P < 0.001). In conclusion, cell death biomarkers were increased in patients with BTC, and M30 could efficiently diagnose BTC.
Collapse
Affiliation(s)
- Mitsuru Sugimoto
- Department of Gastroenterology, Fukushima Medical University, School of Medicine, Fukushima, Japan.
| | - Kazumichi Abe
- Department of Gastroenterology, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | - Manabu Hayashi
- Department of Gastroenterology, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | - Tadayuki Takagi
- Department of Gastroenterology, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | - Rei Suzuki
- Department of Gastroenterology, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | - Naoki Konno
- Department of Gastroenterology, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | - Hiroyuki Asama
- Department of Gastroenterology, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | - Yuki Sato
- Department of Gastroenterology, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | - Hiroki Irie
- Department of Gastroenterology, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | - Ko Watanabe
- Department of Gastroenterology, Fukushima Medical University, School of Medicine, Fukushima, Japan
- Department of Endoscopy, Fukushima Medical University Hospital, Fukushima, Japan
| | - Jun Nakamura
- Department of Gastroenterology, Fukushima Medical University, School of Medicine, Fukushima, Japan
- Department of Endoscopy, Fukushima Medical University Hospital, Fukushima, Japan
| | - Hitomi Kikuchi
- Department of Gastroenterology, Fukushima Medical University, School of Medicine, Fukushima, Japan
- Department of Endoscopy, Fukushima Medical University Hospital, Fukushima, Japan
| | - Yuichi Waragai
- Department of Gastroenterology, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | - Mika Takasumi
- Department of Gastroenterology, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | - Minami Hashimoto
- Department of Gastroenterology, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | - Takuto Hikichi
- Department of Endoscopy, Fukushima Medical University Hospital, Fukushima, Japan
| | - Yoshihiro Nozawa
- Department of Pathology, Shirakawa Kousei General Hospital, Shirakawa, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University, School of Medicine, Fukushima, Japan
| |
Collapse
|
11
|
Tajima H, Makino I, Ohbatake Y, Nakanuma S, Hayashi H, Nakagawara H, Miyashita T, Takamura H, Ohta T. Neoadjuvant chemotherapy for pancreatic cancer: Effects on cancer tissue and novel perspectives. Oncol Lett 2017; 13:3975-3981. [PMID: 28599404 DOI: 10.3892/ol.2017.6008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 02/17/2017] [Indexed: 01/05/2023] Open
Abstract
Chemotherapy for pancreatic cancer has diversified following the addition of more treatment regimens; however, in spite of this, pancreatic cancer remains a fatal disease. Preoperative (neoadjuvant) chemotherapy (NAC) or neoadjuvant chemoradiation therapy (NACRT) has been developed and implemented. For patients with borderline resectable pancreatic cancer (BRPC) and locally advanced pancreatic cancer (LAPC), a number of clinical trials have been conducted; NACRT was demonstrated to improve resectability, R0 resection rate, overall survival rate, disease-free survival rate and even an LAPC and BRPC survival advantage over NAC. However, from the knowledge obtained from resected specimens following preoperative treatment, residual pancreatic cancer tissues following NAC are rich in chemoresistant cancer stem-like cells and epithelial-mesenchymal transition (EMT) markers. Conversely, metformin, angiotensin receptor blocker, statins and low-dose paclitaxel are well-known as drugs that inhibit EMT, which is associated with cancer stem cell-like characteristics. Although clinical effectiveness is unlikely to be achieved using one of these as an anticancer agent, it is reasonable to use these drugs for patients with comorbidities in the treatment of pancreatic cancer. Furthermore, gemcitabine (GEM) affects antitumor immunity by stimulating the expression of major histocompatibility complex class I-related chain A on the surface of cancer cells to enhance the cytotoxicity of natural killer cells. Considering EMT and antitumor immunity, there is a possibility that GEM and nanoparticle albumin-bound paclitaxel therapy is the most suitable regimen for treating pancreatic cancer. However, even as preoperative treatment progresses, R0 resection is the most important factor for the long-term survival of pancreatic cancer patients.
Collapse
Affiliation(s)
- Hidehiro Tajima
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Isamu Makino
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Yoshinao Ohbatake
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Shinichi Nakanuma
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Hironori Hayashi
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Hisatoshi Nakagawara
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Tomoharu Miyashita
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Hiroyuki Takamura
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Tetsuo Ohta
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa 920-8641, Japan
| |
Collapse
|
12
|
Nam K, Oh S, Lee KM, Yoo SA, Shin I. CD44 regulates cell proliferation, migration, and invasion via modulation of c-Src transcription in human breast cancer cells. Cell Signal 2015; 27:1882-94. [PMID: 25979842 DOI: 10.1016/j.cellsig.2015.05.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 04/27/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
CD44 was recently identified as a cancer initiation marker on the cell membrane. The cytoplasmic tail of CD44 is known to bind ERM (ezrin, radixin, moesin) proteins, cytoskeletal proteins like ankyrin, and the non-receptor tyrosine kinase c-Src. CD44 transmits its oncogenic signaling via c-Src and its downstream effectors. To investigate the role of CD44 in breast cancer cells, we generated CD44 knock-down cells via retroviral delivery of shRNA against CD44. We found that silencing of CD44 decreased the proliferation, migration, and invasion of breast cancer cells. The expression and activity of cell migration-related proteins, including c-Src, paxillin, and FAK were decreased by CD44 silencing. We also found that the c-Jun protein level was negatively regulated via induction of a GSK-3β-dependent degradation pathway in CD44 knock-down cells. The expression level of Sp1, a target gene product of c-Jun, was also decreased in these cells. Finally, CD44 knock-down suppressed both mRNA and protein levels of c-Src and its downstream MAPK pathway as a result of down-regulation of Sp1 as a transcription factor for c-Src. Collectively, these results indicate that biological changes induced by CD44 silencing are mediated by cumulative down-regulation of c-Jun, Sp1, and c-Src in human breast cancer cells.
Collapse
Affiliation(s)
- KeeSoo Nam
- Department of Life Science, Hanyang University, Seoul 133-791, Republic of Korea
| | - Sunhwa Oh
- Department of Life Science, Hanyang University, Seoul 133-791, Republic of Korea
| | - Kyung-min Lee
- Deparment of Hematology/Oncology, Vanderbilt University, Nashville, TN 37209, USA
| | - Seung-ah Yoo
- Department of Life Science, Hanyang University, Seoul 133-791, Republic of Korea
| | - Incheol Shin
- Department of Life Science, Hanyang University, Seoul 133-791, Republic of Korea; Natural Science Institute, Hanyang University, Seoul 133-791, Republic of Korea.
| |
Collapse
|
13
|
Metastasis-promoting role of extravasated platelet activation in tumor. J Surg Res 2015; 193:289-94. [DOI: 10.1016/j.jss.2014.07.037] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/03/2014] [Accepted: 07/16/2014] [Indexed: 12/23/2022]
|
14
|
Mizukami T, Kamachi H, Mitsuhashi T, Tsuruga Y, Hatanaka Y, Kamiyama T, Matsuno Y, Taketomi A. Immunohistochemical analysis of cancer stem cell markers in pancreatic adenocarcinoma patients after neoadjuvant chemoradiotherapy. BMC Cancer 2014; 14:687. [PMID: 25240521 PMCID: PMC4190289 DOI: 10.1186/1471-2407-14-687] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/16/2014] [Indexed: 01/13/2023] Open
Abstract
Background Cancer stem cells (CSCs) have been reported to play an important role in chemoradiation resistance. Although the association of CSC markers with clinicopathological outcomes after neoadjuvant chemoradiotherapy (NACRT) has been reported in various types of cancers, there have been no such reports for pancreatic cancer. Here we examined the sequential changes in CSC marker expressions after NACRT in patients with pancreatic adenocarcinoma (PA) and the impact of these changes on the prognosis. Methods We used immunohistochemistry to evaluate the expressions of the CSC markers epithelial cell adhesion molecule (EpCAM), CD24, CD44, CD133, CXCR4 and Aldehyde dehydrogenase 1 (ALDH1) in resected specimens obtained from 28 PA patients, and we compared these expressions with the patients’ clinicopathological parameters and survival data. Results The expression frequencies of CD44 and ALDH1 were significantly higher in the NACRT group (n = 17) compared to the non-NACRT group (n = 11), but the CD133 expression was significantly lower in the NACRT group. In the NACRT group, the expression of CD133 was inversely correlated with that of ALDH1, and CD133+/ALDH1- expression was associated with an unfavorable patient outcome. Conclusion This is the first report showing that NACRT may influence the expression frequencies of CD44, CD133 and ALDH1 in PA patients. Moreover, CD133 and ALDH1 expressions may be useful predictors of prognosis in PA patients who have received NACRT. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-687) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Hirofumi Kamachi
- Department of Gastoroenterological Surgery I, Graduate School of Medicine, Hokkaido University, North 15, West 7, Kita-ku, Sapporo 060-8638, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Vidal SJ, Rodriguez-Bravo V, Galsky M, Cordon-Cardo C, Domingo-Domenech J. Targeting cancer stem cells to suppress acquired chemotherapy resistance. Oncogene 2013; 33:4451-63. [PMID: 24096485 DOI: 10.1038/onc.2013.411] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/12/2013] [Accepted: 08/12/2013] [Indexed: 12/18/2022]
Abstract
Acquired resistance has curtailed cancer survival since the dawn of the chemotherapy age more than half a century ago. Although the application of stem cell (SC) concepts to cancer captured the imagination of scientists for many years, only the last decade has yielded substantial evidence that cancer SCs (CSCs) contribute to chemotherapy resistance. Recent studies suggest that the functional and molecular properties of CSCs constitute therapeutic opportunities to improve the efficacy of chemotherapy. Here we review how these properties have stimulated combination strategies that suppress acquired resistance across a spectrum of malignancies. The clinical implementation of these strategies promises to rejuvenate the effort against an enduring challenge.
Collapse
Affiliation(s)
- S J Vidal
- 1] Department of Pathology, Mount Sinai Icahn School of Medicine, New York, NY, USA [2] Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - V Rodriguez-Bravo
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - M Galsky
- Oncology Department, Tisch Cancer Institute, Mount Sinai Icahn School of Medicine, New York, NY, USA
| | - C Cordon-Cardo
- Department of Pathology, Mount Sinai Icahn School of Medicine, New York, NY, USA
| | - J Domingo-Domenech
- Department of Pathology, Mount Sinai Icahn School of Medicine, New York, NY, USA
| |
Collapse
|