1
|
Lyu Z, Mahenderan A, Radhakrishnan AKGK, Chin YS, Yin C. Swimming upregulates APOL3 through regulating macrophage polarization to inhibit glycolysis and the development of melanoma. 3 Biotech 2024; 14:307. [PMID: 39583207 PMCID: PMC11582285 DOI: 10.1007/s13205-024-04150-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
This study investigated the role of swimming exercise in regulating melanoma tumour growth and glycolysis in cancer cells, the specific mechanism involved was also studied. In our study, a murine melanoma tumour model was established to assess the impact of swimming on tumour growth. The mRNA and protein expressions were assessed using qRT-PCR, western blot, and IHC. The metabolic behavior of melanoma cells was examined through lactic acid level measurements and glucose consumption assessments. CCK-8 and colony formation assays were used to detect cell viability and proliferation. ELISA was employed to determine the levels of cytokines secreted by macrophages. The interaction between APOL3 and STAT3 was analyzed by dual luciferase reporter gene and ChIP assays. Our results demonstrated that swimming exercise suppressed melanoma growth in mice by suppressing glycolysis, which might be related to APOL3 upregulation. In addition, downregulation of APOL3 in melanoma was associated with poor prognosis, and APOL3 overexpression markedly suppressed melanoma cell proliferation by reducing glucose uptake and lactate production in vitro. Mechanistically, STAT3 directly down-regulated APOL3 transcription. Swimming upregulated APOL3 by inactivating the IL-6R-STAT3 signaling axis in melanoma cells by inhibiting the secretion of IL-6 by M2 macrophages. As expected, IL-6 secreted by M2 macrophages promoted glycolysis in melanoma cells by reducing APOL3 expression. In summary, swimming inactivated the IL-6R/STAT3 signaling axis in melanoma cells by inhibiting the secretion of IL-6 by M2 macrophages, which could suppress the growth of melanoma in the body by upregulating APOL3 to inhibit glycolysis.
Collapse
Affiliation(s)
- Zhenlei Lyu
- Hainan Vocational University of Science and Technology, College of Medicine, No.18 Qiongshan Avenue, Meilan District, Haikou, 571100 Hainan People’s Republic of China
- Sports Science Programme, Faculty of Sports Science and Recreation, Universiti Teknologi MARA, 40450 Selangor, Shah Alam Malaysia
| | - Appukutty Mahenderan
- Sports Science Programme, Faculty of Sports Science and Recreation, Universiti Teknologi MARA, 40450 Selangor, Shah Alam Malaysia
| | | | - Yit Siew Chin
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang Selangor Malaysia, 43400 Seri Kembangan, Malaysia
| | - Chao Yin
- Hainan Vocational University of Science and Technology, College of Medicine, No.18 Qiongshan Avenue, Meilan District, Haikou, 571100 Hainan People’s Republic of China
| |
Collapse
|
2
|
Feng Y, Feng X, Wan R, Luo Z, Qu L, Wang Q. Impact of exercise on cancer: mechanistic perspectives and new insights. Front Immunol 2024; 15:1474770. [PMID: 39346906 PMCID: PMC11427289 DOI: 10.3389/fimmu.2024.1474770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
This review critically evaluates the substantial role of exercise in enhancing cancer prevention, treatment, and patient quality of life. It conclusively demonstrates that regular physical activity not only reduces cancer risk but also significantly mitigates side effects of cancer therapies. The key findings include notable improvements in fatigue management, reduction of cachexia symptoms, and enhancement of cognitive functions. Importantly, the review elucidates the profound impact of exercise on tumor behavior, modulation of immune responses, and optimization of metabolic pathways, advocating for the integration of exercise into standard oncological care protocols. This refined abstract encourages further exploration and application of exercise as a pivotal element of cancer management.
Collapse
Affiliation(s)
- Ye Feng
- School of Stomatology, Xuzhou Medical University, Xuzhou,
Jiangsu, China
| | - Xingting Feng
- Department of Sports Medicine, Huashan Hospital, Fudan University,
Shanghai, China
| | - Renwen Wan
- Department of Sports Medicine, Huashan Hospital, Fudan University,
Shanghai, China
| | - Zhiwen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University,
Shanghai, China
| | - Lijun Qu
- Department of Orthopaedics, Kunshan Hospital of Chinese Medicine,
Kunshan, Jiangsu, China
| | - Qing Wang
- Department of Orthopaedics, Kunshan Hospital of Chinese Medicine,
Kunshan, Jiangsu, China
| |
Collapse
|
3
|
Brummer C, Pukrop T, Wiskemann J, Bruss C, Ugele I, Renner K. Can Exercise Enhance the Efficacy of Checkpoint Inhibition by Modulating Anti-Tumor Immunity? Cancers (Basel) 2023; 15:4668. [PMID: 37760634 PMCID: PMC10526963 DOI: 10.3390/cancers15184668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Immune checkpoint inhibition (ICI) has revolutionized cancer therapy. However, response to ICI is often limited to selected subsets of patients or not durable. Tumors that are non-responsive to checkpoint inhibition are characterized by low anti-tumoral immune cell infiltration and a highly immunosuppressive tumor microenvironment. Exercise is known to promote immune cell circulation and improve immunosurveillance. Results of recent studies indicate that physical activity can induce mobilization and redistribution of immune cells towards the tumor microenvironment (TME) and therefore enhance anti-tumor immunity. This suggests a favorable impact of exercise on the efficacy of ICI. Our review delivers insight into possible molecular mechanisms of the crosstalk between muscle, tumor, and immune cells. It summarizes current data on exercise-induced effects on anti-tumor immunity and ICI in mice and men. We consider preclinical and clinical study design challenges and discuss the role of cancer type, exercise frequency, intensity, time, and type (FITT) and immune sensitivity as critical factors for exercise-induced impact on cancer immunosurveillance.
Collapse
Affiliation(s)
- Christina Brummer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, 93053 Regensburg, Germany;
- Comprehensive Cancer Center Ostbayern (CCCO), 93053 Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, 93053 Regensburg, Germany;
- Comprehensive Cancer Center Ostbayern (CCCO), 93053 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Joachim Wiskemann
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany;
| | - Christina Bruss
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany;
| | - Ines Ugele
- Department of Otorhinolaryngology, University Hospital Regensburg, 93053 Regensburg, Germany; (I.U.); (K.R.)
| | - Kathrin Renner
- Comprehensive Cancer Center Ostbayern (CCCO), 93053 Regensburg, Germany
- Department of Otorhinolaryngology, University Hospital Regensburg, 93053 Regensburg, Germany; (I.U.); (K.R.)
| |
Collapse
|
4
|
Collier-Bain HD, Brown FF, Causer AJ, Emery A, Oliver R, Moore S, Murray J, Turner JE, Campbell JP. Harnessing the immunomodulatory effects of exercise to enhance the efficacy of monoclonal antibody therapies against B-cell haematological cancers: a narrative review. Front Oncol 2023; 13:1244090. [PMID: 37681023 PMCID: PMC10482436 DOI: 10.3389/fonc.2023.1244090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are standard care for many B-cell haematological cancers. The modes of action for these mAbs include: induction of cancer cell lysis by activating Fcγ-receptors on innate immune cells; opsonising target cells for antibody-dependent cellular cytotoxicity or phagocytosis, and/or triggering the classical complement pathway; the simultaneous binding of cancer cells with T-cells to create an immune synapse and activate perforin-mediated T-cell cytotoxicity against cancer cells; blockade of immune checkpoints to facilitate T-cell cytotoxicity against immunogenic cancer cell clones; and direct delivery of cytotoxic agents via internalisation of mAbs by target cells. While treatment regimens comprising mAb therapy can lead to durable anti-cancer responses, disease relapse is common due to failure of mAb therapy to eradicate minimal residual disease. Factors that limit mAb efficacy include: suboptimal effector cell frequencies, overt immune exhaustion and/or immune anergy, and survival of diffusely spread tumour cells in different stromal niches. In this review, we discuss how immunomodulatory changes arising from exposure to structured bouts of acute exercise might improve mAb treatment efficacy by augmenting (i) antibody-dependent cellular cytotoxicity, (ii) antibody-dependent cellular phagocytosis, (iii) complement-dependent cytotoxicity, (iv) T-cell cytotoxicity, and (v) direct delivery of cytotoxic agents.
Collapse
Affiliation(s)
| | - Frankie F. Brown
- Department for Health, University of Bath, Bath, United Kingdom
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Adam J. Causer
- Department for Health, University of Bath, Bath, United Kingdom
| | - Annabelle Emery
- Department for Health, University of Bath, Bath, United Kingdom
| | - Rebecca Oliver
- Department for Health, University of Bath, Bath, United Kingdom
- Department of Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - Sally Moore
- Department of Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - James Murray
- Department of Haematology, Royal United Hospitals Bath NHS Foundation Trust, Bath, United Kingdom
| | - James E. Turner
- Department for Health, University of Bath, Bath, United Kingdom
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | | |
Collapse
|
5
|
Aldahlawi AM, Zaher KSA. Dendritic Cell-Based Immunity: Screening of Dendritic Cell Subsets in Breast Cancer-Bearing Mice. J Microsc Ultrastruct 2023; 11:150-160. [PMID: 38025181 PMCID: PMC10679829 DOI: 10.4103/jmau.jmau_85_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/19/2023] Open
Abstract
Background Breast cancer (BC) is the most devastating disease, particularly the lethal invasive form. It is the most underlying cause of death among women worldwide. The expansion of BC is controlled by a variety of alterations in the tumor cells themselves, in addition to the state of the immune system, which has a direct influence on the tumor microenvironment. Numerous receptors expressed by T-cells interact with ligands on antigen-presenting cells to provide activation signals results in mounting effector anti-tumor T-cell responses. On the other hand, there is a dearth of information about the actual interactions and reactions of T-cells and dendritic cells (DCs) all through the progression of tumor development. Aim Immune system response against BC was investigated through tumor induction in mice. The size and volume of the tumor were calculated. Moreover, the phenotypical profile of T-cells and DCs from lymph nodes (LN) and spleens of BC-bearing mice was investigated. In addition, the levels of Transforming growth factor-β, Interferon-gamma (IFN-γ), Interleukin IL-2, IL-10, IL-4, IL-12, and tumor necrosis factor (TNF)-α were determined. Materials and Methods MDA231 cells were utilized to induce BC in 30 white BALB/C mice, whereas the other 30 mice acted as healthy controls and were not treated with any cancer-causing agents. The impact of malignancy was evaluated using flow cytometry based on the marking surface molecules, as well as the titer of specific cytokines of the mice's LN culture using the ELISA method. These cytokines included transforming growth factor-β (TGF-β), IFN-γ, IL-2, IL -10, IL -4, IL -12, and TNF-α. Results The findings showed that the maturation of DCs was inhibited, followed by an accumulation of immature DCs. These immature DCs increase the release of TGF-β and cytokines like IL-10 and inhibit the release of IFN-γ and IL-12 in the culture supernatant of nodal lymph and spleen suspension of BC-bearing mice compared to control. In addition, there was a low expression of CD80 and CD86 on DCs, which indicates a low maturation process. Conclusion According to the findings, the tumor microenvironment may have been responsible for preventing the maturation of DCs. This, in turn, weakened the immune response and facilitated the ability of the tumor to proliferate. Furthermore, the tumor microenvironment increased the number of immature DCs by inhibiting their stimulation by overexpression of TGF-β-produced by regulatory T lymphocytes and stimulation of tumor cells. In addition, the tumor microenvironment stimulated the secretion of cytokines such as IL-10, and CD4 and decreased the secretion of IFN-γ-and IL-12 in tumor-induced mice cultured LN and spleen.
Collapse
Affiliation(s)
- Alia M Aldahlawi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| | - Kawther Sayed Ali Zaher
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 21859, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21859, Saudi Arabia
| |
Collapse
|
6
|
Giallauria F, Testa C, Cuomo G, Di Lorenzo A, Venturini E, Lauretani F, Maggio MG, Iannuzzo G, Vigorito C. Exercise Training in Elderly Cancer Patients: A Systematic Review. Cancers (Basel) 2023; 15:cancers15061671. [PMID: 36980559 PMCID: PMC10046194 DOI: 10.3390/cancers15061671] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Due to the aging of the population, in 70% of cases, a new cancer diagnosis equals a cancer diagnosis in a geriatric patient. In this population, beyond the concept of mortality and morbidity, functional capacity, disability, and quality of life remain crucial. In fact, when the functional status is preserved, the pathogenetic curve towards disability will stop or even regress. The present systematic review investigated the effectiveness of physical exercise, as part of a holistic assessment of the patient, for preventing disability and improving the patient’s quality of life, and partially reducing all-cause mortality. This evidence must point towards decentralization of care by implementing the development of rehabilitation programs for elderly cancer patients either before or after anti-cancer therapy.
Collapse
Affiliation(s)
- Francesco Giallauria
- Department of Translational Medical Sciences, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
- Faculty of Sciences and Technology, University of New England, Armidale, NSW 2351, Australia
- Correspondence:
| | - Crescenzo Testa
- Geriatric Clinic Unit, Geriatric-Rehabilitation Department, University Hospital, 43126 Parma, Italy
| | - Gianluigi Cuomo
- Department of Translational Medical Sciences, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - Anna Di Lorenzo
- Department of Translational Medical Sciences, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - Elio Venturini
- Cardiac Rehabilitation Unit and Department of Cardiology, Azienda USL Toscana Nord-Ovest, “Cecina Civil Hospital”, 57023 Cecina, Italy
| | - Fulvio Lauretani
- Geriatric Clinic Unit, Geriatric-Rehabilitation Department, University Hospital, 43126 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University Hospital of Parma, 43126 Parma, Italy
| | - Marcello Giuseppe Maggio
- Geriatric Clinic Unit, Geriatric-Rehabilitation Department, University Hospital, 43126 Parma, Italy
- Cognitive and Motor Center, Medicine and Geriatric-Rehabilitation Department of Parma, University Hospital of Parma, 43126 Parma, Italy
| | - Gabriella Iannuzzo
- Department of Clinical Medicine and Surgery, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - Carlo Vigorito
- Department of Translational Medical Sciences, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|
7
|
Torregrosa C, Chorin F, Beltran EEM, Neuzillet C, Cardot-Ruffino V. Physical Activity as the Best Supportive Care in Cancer: The Clinician's and the Researcher's Perspectives. Cancers (Basel) 2022; 14:5402. [PMID: 36358820 PMCID: PMC9655932 DOI: 10.3390/cancers14215402] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 08/11/2023] Open
Abstract
Multidisciplinary supportive care, integrating the dimensions of exercise alongside oncological treatments, is now regarded as a new paradigm to improve patient survival and quality of life. Its impact is important on the factors that control tumor development, such as the immune system, inflammation, tissue perfusion, hypoxia, insulin resistance, metabolism, glucocorticoid levels, and cachexia. An increasing amount of research has been published in the last years on the effects of physical activity within the framework of oncology, marking the appearance of a new medical field, commonly known as "exercise oncology". This emerging research field is trying to determine the biological mechanisms by which, aerobic exercise affects the incidence of cancer, the progression and/or the appearance of metastases. We propose an overview of the current state of the art physical exercise interventions in the management of cancer patients, including a pragmatic perspective with tips for routine practice. We then develop the emerging mechanistic views about physical exercise and their potential clinical applications. Moving toward a more personalized, integrated, patient-centered, and multidisciplinary management, by trying to understand the different interactions between the cancer and the host, as well as the impact of the disease and the treatments on the different organs, this seems to be the most promising method to improve the care of cancer patients.
Collapse
Affiliation(s)
- Cécile Torregrosa
- Oncologie Digestive, Département d’Oncologie Médicale Institut Curie, Université Versailles Saint-Quentin—Université Paris Saclay, 35, rue Dailly, 92210 Saint-Cloud, France
- Département de Chirurgie Digestive et Oncologique, Hôpital Universitaire Ambroise Paré, Assistance Publique-Hôpitaux de Paris, 9 avenue Charles de Gaulle, 92100 Boulogne Billancourt, France
| | - Frédéric Chorin
- Laboratoire Motricité Humaine, Expertise, Sport, Santé (LAMHESS), HEALTHY Graduate School, Université Côte d’Azur, 06205 Nice, France
- Clinique Gériatrique du Cerveau et du Mouvement, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06205 Nice, France
| | - Eva Ester Molina Beltran
- Oncologie Digestive, Département d’Oncologie Médicale Institut Curie, Université Versailles Saint-Quentin—Université Paris Saclay, 35, rue Dailly, 92210 Saint-Cloud, France
| | - Cindy Neuzillet
- Oncologie Digestive, Département d’Oncologie Médicale Institut Curie, Université Versailles Saint-Quentin—Université Paris Saclay, 35, rue Dailly, 92210 Saint-Cloud, France
- GERCOR, 151 rue du Faubourg Saint-Antoine, 75011 Paris, France
| | - Victoire Cardot-Ruffino
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
8
|
Exercise in cancer prevention and anticancer therapy: Efficacy, molecular mechanisms and clinical information. Cancer Lett 2022; 544:215814. [DOI: 10.1016/j.canlet.2022.215814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 11/20/2022]
|
9
|
Pramanik A, Das S, Kumar B, Ganguly S, Singh M, Guleria K, Shenoy S, Singh S. Supplemental aerobic, anaerobic and strength training positively affects autonomic functioning, anaerobic capacity, and immune cell homeostasis of male judo athletes. COMPARATIVE EXERCISE PHYSIOLOGY 2022. [DOI: 10.3920/cep210018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The present study aimed to investigate the effect of additional package of aerobic, anaerobic and strength training (AAS training), along with the conventional judo specific training, on autonomic nervous system balance, anaerobic capacity, exercise adaptation, phenotype of different blood mononuclear cells and cellular inflammatory signalling of university judo athletes. Thirty male judokas were randomly allocated to a control group/conventional judo specific training group (performing Uchi-komi, Nage komi, and Randori) or to an experimental group/conventional judo specific training + additional AAS training group. Physiological data including recovery ANS variables and anaerobic capacity were obtained by using wireless heart rate variability and anaerobic cycle ergometer, respectively, at two different time points (T1-pre, T3-post). Serum and primary mononuclear cells were prepared at three different time points (T1-pre, T2-acute, T3-post) and processed further as per the experimental requirement. For measuring the expression level of genes, and proteins biomarkers related to immune health, we have performed advanced qPCR array technique, flow cytometry, ELISA and zymosan-fluorescein assays. The additional training modality enhanced athletes’ anaerobic performance, parasympathetic functioning, and exercise adaptation. On the other hand, it decreased fatigue index, stress index, number of reactive immune cells, and intensity of inflammatory signalling. Overall, the present study, for the very first time, exhibited the positive effect of four weeks long additional AAS training on autonomic functioning, anaerobic capacity, and immune cell homeostasis of male judo athletes. This additional training package might also help the judo coaches to optimise training schedule for the competitive session.
Collapse
Affiliation(s)
- A. Pramanik
- MYAS-GNDU, Department of Sports Sciences and Medicine, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - S. Das
- University of Delhi, South Moti Bagh, New Delhi, Delhi 110021, India
| | - B.A. Kumar
- MYAS-GNDU, Department of Sports Sciences and Medicine, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - S. Ganguly
- MYAS-GNDU, Department of Sports Sciences and Medicine, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - M. Singh
- Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - K. Guleria
- Human Cytogenetics Laboratory, Department of Human Genetics, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - S. Shenoy
- MYAS-GNDU, Department of Sports Sciences and Medicine, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - S.B. Singh
- NIPER, Hyderabad, Balanagar, Hyderabad 500037, Telangana, India
| |
Collapse
|
10
|
Jia N, Zhou Y, Dong X, Ding M. The antitumor mechanisms of aerobic exercise: A review of recent preclinical studies. Cancer Med 2021; 10:6365-6373. [PMID: 34387383 PMCID: PMC8446393 DOI: 10.1002/cam4.4169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/28/2021] [Accepted: 07/15/2021] [Indexed: 12/23/2022] Open
Abstract
Aerobic exercise is an important non‐pharmacological means of antitumor intervention, but related mechanisms are poorly understood. In this review, previous studies are summarized from the aspects of tumor oxygenation, autophagy versus apoptosis, and organismal immunity. Current findings on the antitumor effects of aerobic exercise involve AMPK signaling, PI3K/Akt signaling, Th1/Th2 cytokine balance related to immunity, PD‐1/PD‐L1 immunosuppressive signaling, and related cytokine pathways. Several directions for further research are proposed, including whether newly discovered subgroups of cytokines influence the effects of aerobic exercise on tumors, tailoring corresponding exercise prescriptions based on the bidirectional effects of certain cytokines at different stages, identifying the potential effects of exercise time and intensity, and elucidating details of the unclear mechanisms. Through the discussion of the existing data, we hope to provide new ideas for the future research of exercise therapy.
Collapse
Affiliation(s)
- Ningxin Jia
- College of Physical Education, Shandong Normal University, Jinan, China
| | - Yanan Zhou
- College of Physical Education, Shandong Normal University, Jinan, China
| | - Xiaosheng Dong
- College of Physical Education, Shandong University, Jinan, China
| | - Meng Ding
- College of Physical Education, Shandong Normal University, Jinan, China
| |
Collapse
|
11
|
Zhao X, Cong S, Guo Q, Cheng Y, Liang T, Wang J, Zhang G. Combination of Immune-Related Genomic Alterations Reveals Immune Characterization and Prediction of Different Prognostic Risks in Ovarian Cancer. Front Cell Dev Biol 2021; 9:653357. [PMID: 33968933 PMCID: PMC8102990 DOI: 10.3389/fcell.2021.653357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/17/2021] [Indexed: 11/13/2022] Open
Abstract
With the highest case-fatality rate among women, the molecular pathological alterations of ovarian cancer (OV) are complex, depending on the diversity of genomic alterations. Increasing evidence supports that immune infiltration in tumors is associated with prognosis. Therefore, we aim to assess infiltration in OV using multiple methods to capture genomic signatures regulating immune events to identify reliable predictions of different outcomes. A dataset of 309 ovarian serous cystadenocarcinoma patients with overall survival >90 days from The Cancer Genome Atlas (TCGA) was analyzed. Multiple estimations and clustering methods identified and verified two immune clusters with component differences. Functional analyses pointed out immune-related alterations underlying internal genomic variables potentially. After extracting immune genes from a public database, the LASSO Cox regression model with 10-fold cross-validation was used for selecting genes associated with overall survival rate significantly, and a risk score model was then constructed. Kaplan-Meier survival and Cox regression analyses among cohorts were performed systematically to evaluate prognostic efficiency among the risk score model and other clinical pathological parameters, establishing a predictive ability independently. Furthermore, this risk score model was compared among identified signatures in previous studies and applied to two external cohorts, showing better prediction performance and generalization ability, and also validated as robust in association with immune cell infiltration in bulk tissues. Besides, a transcription factor regulation network suggested upper regulatory mechanisms in OV. Our immune risk score model may provide gyneco-oncologists with predictive values for the prognosis and treatment management of patients with OV.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guangmei Zhang
- Department of Gynecology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
Exercise-Induced Changes in Tumor Growth via Tumor Immunity. Sports (Basel) 2021; 9:sports9040046. [PMID: 33808154 PMCID: PMC8065770 DOI: 10.3390/sports9040046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
Immunity in the tumor microenvironment plays a central role in tumor development. Cytotoxic immune cells act against tumors, while tumors manage to trigger immunosuppressive mechanisms for defense. One bout of physical exercise acutely regulates the immune system inducing short-term redistribution of immune cells among body organs. Repeated acute immune cell mobilization with continuing exercise training results in long-term adaptations. These long-term exercise-induced changes in the immune system arise both in healthy and in diseased populations, including cancer patients. Recent preclinical studies indicate that physical exercise may have a positive impact on intra-tumoral immune cell processes, resulting in tumor suppression. This short narrative review describes the effect of physical exercise on tumor growth as detected via changes in tumor immunity. Research evidence shows that exercise may improve tumor-suppressive functions and may reduce tumor-progressive responses and mechanisms of immune cells, controlling tumor development. Specifically, it seems that exercise in rodents triggers shifts in tumor infiltration of macrophages, neutrophils, natural killer cells, cytotoxic and regulatory T lymphocytes, resulting in tumor suppression. These recent promising data suggest that physical exercise could be combined with anticancer immunotherapies, although exercise parameters like intensity, duration, and frequency need to be evaluated in more detail. More research is needed to investigate the effect of exercise in other immune cell subtypes and their possible connection with tumor growth, whilst information from human tumors is also required.
Collapse
|
13
|
Does Flavonoid Consumption Improve Exercise Performance? Is It Related to Changes in the Immune System and Inflammatory Biomarkers? A Systematic Review of Clinical Studies since 2005. Nutrients 2021; 13:nu13041132. [PMID: 33808153 PMCID: PMC8065858 DOI: 10.3390/nu13041132] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Flavonoids are attracting increasing attention due to their antioxidant, cardioprotective, and immunomodulatory properties. Nevertheless, little is known about their role in exercise performance in association with immune function. This systematic review firstly aimed to shed light on the ergogenic potential of flavonoids. A search strategy was run using SCOPUS database. The returned studies were screened by prespecified eligibility criteria, including intervention lasting at least one week and performance objectively quantified, among others. Fifty-one studies (54 articles) met the inclusion criteria, involving 1288 human subjects, either physically untrained or trained. Secondly, we aimed to associate these studies with the immune system status. Seventeen of the selected studies (18 articles) assessed changes in the immune system. The overall percentage of studies reporting an improved exercise performance following flavonoid supplementation was 37%, the proportion being 25% when considering quercetin, 28% for flavanol-enriched extracts, and 54% for anthocyanins-enriched extracts. From the studies reporting an enhanced performance, only two, using anthocyanin supplements, focused on the immune system and found certain anti-inflammatory effects of these flavonoids. These results suggest that flavonoids, especially anthocyanins, may exert beneficial effects for athletes’ performances, although further studies are encouraged to establish the optimal dosage and to clarify their impact on immune status.
Collapse
|
14
|
Lamkin DM, Bradshaw KP, Chang J, Epstein M, Gomberg J, Prajapati KP, Soliman VH, Sylviana T, Wong Y, Morizono K, Sloan EK, Cole SW. Physical activity modulates mononuclear phagocytes in mammary tissue and inhibits tumor growth in mice. PeerJ 2021; 9:e10725. [PMID: 33552733 PMCID: PMC7821756 DOI: 10.7717/peerj.10725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/16/2020] [Indexed: 12/29/2022] Open
Abstract
The risk for breast cancer is significantly reduced in persons who engage in greater amounts of physical activity, and greater physical activity before or after diagnosis associates with reduced disease-specific mortality. Previous mechanistic studies indicate that components of innate immunity can mediate an inhibitory effect of physical activity on several types of tumor. However, in breast cancer specifically, the myeloid compartment of innate immunity is thought to exhibit high propensity for an immunosuppressive role that obstructs anti-tumor immunity. Thus, we tested the notion that greater physical activity alters mononuclear phagocytes in mammary tissue when inhibiting nascent tumor in a murine model of breast cancer. To model greater physical activity, we placed an angled running wheel in each mouse's home cage for two weeks before tumor engraftment with EO771 mammary cancer cells that express luciferase for bioluminescent detection. Fully immunocompetent mice and mice with compromised adaptive immunity showed significantly less mammary tumor signal when given access to running wheels, although the effect size was smaller in this latter group. To investigate the role of the myeloid compartment, mononuclear phagocytes were ablated by systemic injection of clodronate liposomes at 24 h before tumor engraftment and again at the time of tumor engraftment, and this treatment reversed the inhibition in wheel running mice. However, clodronate also inhibited mammary tumor signal in sedentary mice, in conjunction with an expected decrease in gene and protein expression of the myeloid antigen, F4/80 (Adgre1), in mammary tissue. Whole transcriptome digital cytometry with CIBERSORTx was used to analyze myeloid cell populations in mammary tissue following voluntary wheel running and clodronate treatment, and this approach found significant changes in macrophage and monocyte populations. In exploratory analyses, whole transcriptome composite scores for monocytic myeloid-derived suppressor cell (M-MDSC), macrophage lactate timer, and inflammation resolution gene expression programs were significantly altered. Altogether, the results support the hypothesis that physical activity inhibits nascent mammary tumor growth by enhancing the anti-tumor potential of mononuclear phagocytes in mammary tissue.
Collapse
Affiliation(s)
- Donald M. Lamkin
- Norman Cousins Center for PNI, Semel Institute for Neuroscience, University of California, Los Angeles, CA, United States of America
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, United States of America
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, United States of America
| | - Karen P. Bradshaw
- Norman Cousins Center for PNI, Semel Institute for Neuroscience, University of California, Los Angeles, CA, United States of America
- Department of Neuroscience, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Janice Chang
- Norman Cousins Center for PNI, Semel Institute for Neuroscience, University of California, Los Angeles, CA, United States of America
| | - Ma’ayan Epstein
- Norman Cousins Center for PNI, Semel Institute for Neuroscience, University of California, Los Angeles, CA, United States of America
| | - Jack Gomberg
- Norman Cousins Center for PNI, Semel Institute for Neuroscience, University of California, Los Angeles, CA, United States of America
| | - Krupa P. Prajapati
- Norman Cousins Center for PNI, Semel Institute for Neuroscience, University of California, Los Angeles, CA, United States of America
| | - Veronica H. Soliman
- Norman Cousins Center for PNI, Semel Institute for Neuroscience, University of California, Los Angeles, CA, United States of America
| | - Thezia Sylviana
- Norman Cousins Center for PNI, Semel Institute for Neuroscience, University of California, Los Angeles, CA, United States of America
| | - Yinnie Wong
- Norman Cousins Center for PNI, Semel Institute for Neuroscience, University of California, Los Angeles, CA, United States of America
| | - Kouki Morizono
- Divison of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, United States of America
- UCLA AIDS Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, United States of America
| | - Erica K. Sloan
- Norman Cousins Center for PNI, Semel Institute for Neuroscience, University of California, Los Angeles, CA, United States of America
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, United States of America
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre-Victorian Comprehensive Cancer Centre, Melbourne, Victoria, Austalia
| | - Steve W. Cole
- Norman Cousins Center for PNI, Semel Institute for Neuroscience, University of California, Los Angeles, CA, United States of America
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, United States of America
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, United States of America
- Divison of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, United States of America
| |
Collapse
|
15
|
Orlandella FM, De Stefano AE, Iervolino PLC, Buono P, Soricelli A, Salvatore G. Dissecting the molecular pathways involved in the effects of physical activity on breast cancers cells: A narrative review. Life Sci 2020; 265:118790. [PMID: 33220294 DOI: 10.1016/j.lfs.2020.118790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/12/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023]
Abstract
Epidemiologic evidence suggests that obesity and sedentary are modifiable factors strongly associated with breast cancer risk worldwide. Since breast cancer represents the most frequent malignant neoplasm and the second cause of cancer-related deaths in women worldwide, an insight into the molecular mechanisms clarifying the effects of physical activity in breast cancer cells could have important implication for changing this cancer burden. In this narrative Review article, we summarize the current knowledge, regarding the effects of adapted physical activity program, focusing on the cellular signaling pathways activated and on the molecular markers involved in breast cancer. Regular exercise training in breast cancer patients has been shown to positively affect tumor-growth and survival rate. Indeed, emerging work demonstrates that regular exercise is able to affect multiple cancer hallmarks influencing the development and progression of cancer. In conclusion, changes in the circulating insulin, adipokines and estrogen levels, inflammation and oxidative stress could represent some of the possible biological mechanisms through which exercise may influence breast cancer development and recurrence.
Collapse
Affiliation(s)
| | - Anna Elisa De Stefano
- Dipartimento di Scienze Motorie e del Benessere, Università "Parthenope", Via Medina 40, 80133 Naples, Italy; CEINGE - Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Paola Lucia Chiara Iervolino
- CEINGE - Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy; Dipartimento di Scienze Biomediche Avanzate, Università "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Pasqualina Buono
- Dipartimento di Scienze Motorie e del Benessere, Università "Parthenope", Via Medina 40, 80133 Naples, Italy; CEINGE - Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Andrea Soricelli
- IRCCS SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; Dipartimento di Scienze Motorie e del Benessere, Università "Parthenope", Via Medina 40, 80133 Naples, Italy
| | - Giuliana Salvatore
- IRCCS SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; Dipartimento di Scienze Motorie e del Benessere, Università "Parthenope", Via Medina 40, 80133 Naples, Italy; CEINGE - Biotecnologie Avanzate S.c.a.r.l., Via Gaetano Salvatore 486, 80145 Naples, Italy
| |
Collapse
|
16
|
Ahmeda A, Zangeneh MM, Zangeneh A. Green formulation and chemical characterization of
Lens culinaris
seed aqueous extract conjugated gold nanoparticles for the treatment of acute myeloid leukemia in comparison to mitoxantrone in a leukemic mouse model. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ahmad Ahmeda
- Department of Basic Medical SciencesCollege of Medicine, QU Health, Qatar University Doha Qatar
| | - Mohammad Mahdi Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| | - Akram Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| |
Collapse
|
17
|
Pollán M, Casla-Barrio S, Alfaro J, Esteban C, Segui-Palmer MA, Lucia A, Martín M. Exercise and cancer: a position statement from the Spanish Society of Medical Oncology. Clin Transl Oncol 2020; 22:1710-1729. [PMID: 32052383 PMCID: PMC7423809 DOI: 10.1007/s12094-020-02312-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
Abstract
Due to improvements in the number of cancer survivors and survival time, there is a growing interest in healthy behaviors, such as physical activity (PA), and their potential impact on cancer- and non-cancer-related morbidity in individuals with cancer. Commissioned by the Spanish Society of Medical Oncology (SEOM), in this review, we sought to distill the most recent evidence on this topic, focusing on the mechanisms that underpin the effects of PA on cancer, the role of PA in cancer prevention and in the prognosis of cancer and practical recommendations for clinicians regarding PA counseling. Despite the available information, the introduction of exercise programs into the global management of cancer patients remains a challenge with several areas of uncertainty. Among others, the most effective behavioral interventions to achieve long-term changes in a patient’s lifestyle and the optimal intensity and duration of PA should be defined with more precision in future studies.
Collapse
Affiliation(s)
- M Pollán
- Cancer and Environmental Epidemiology, Carlos III Institute of Health, Madrid, Spain.,Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - S Casla-Barrio
- Exercise-Oncology Unit, Spanish Cancer Association, Madrid, Spain.,GEICAM (Spanish Breast Cancer Group), Madrid, Spain
| | - J Alfaro
- Medical Oncology, Hospital de Terrassa, Barcelona, Spain
| | - C Esteban
- Medical Oncology, Hospital Virgen de la Salud, Toledo, Spain
| | - M A Segui-Palmer
- Medical Oncology, Parc Taulí Hospital Universitari, Sabadell, Spain
| | - A Lucia
- Faculty of Sport Sciences, Universidad Europea de Madrid, Calle Tajo, s/n, 28670, Villaviciosa de Odón, Madrid, Spain. .,Instituto de Investigación Hospital 12 de Octubre and CIBER de Envejecimiento Saludable y Fragilidad (CIBERFES), Madrid, Spain.
| | - M Martín
- GEICAM (Spanish Breast Cancer Group), Madrid, Spain. .,Instituto de Investigacion Sanitaria Gregorio Marañón, Universidad Complutense, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain. .,Medical Oncology Service, Hospital General Universitario Gregorio Marañón, Calle Dr. Esquerdo 46, 28007, Madrid, Spain.
| |
Collapse
|
18
|
Alterations in the innate immune system due to exhausting exercise in intensively trained rats. Sci Rep 2020; 10:967. [PMID: 31969634 PMCID: PMC6976645 DOI: 10.1038/s41598-020-57783-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 11/11/2019] [Indexed: 01/10/2023] Open
Abstract
It is known that intensive physical activity alters the immune system's functionality. However, the influence of the intensity and duration of exercise needs to be studied in more depth. We aimed to establish the changes in the innate immune response induced by two programmes of intensive training in rats compared to sedentary rats. A short training programme included 2 weeks of intensive training, ending with an exhaustion test (short training with exhaustion, S-TE). A second training programme comprised 5-week training including two exhaustion tests and three trainings per week. In this case, immune status was assessed before (T), immediately after (TE) and 24 h after (TE24) an additional final exhaustion test. Biomarkers such as phagocytic activity, macrophage cytokine and reactive oxygen species (ROS) production, and natural killer (NK) cell activity were quantified. S-TE was not enough to induce changes in the assessed innate immunity biomarkers. However, the second training was accompanied by a decrease in the phagocytic activity, changes in the pattern of cytokine secretion and ROS production by macrophages and reduced NK cell proportion but increased NK cytotoxic activity. In conclusion, a 5-week intense training programme, but not a shorter training, induced alterations in the innate immune system functionality.
Collapse
|
19
|
Ahmeda A, Zangeneh A, Zangeneh MM. Green synthesis and chemical characterization of gold nanoparticle synthesized using
Camellia sinensis
leaf aqueous extract for the treatment of acute myeloid leukemia in comparison to daunorubicin in a leukemic mouse model. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5290] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ahmad Ahmeda
- Department of Basic Medical Sciences, College of MedicineQU Health, Qatar University Doha Qatar
| | - Akram Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| | - Mohammad Mahdi Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| |
Collapse
|
20
|
Buss LA, Dachs GU. Effects of Exercise on the Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1225:31-51. [PMID: 32030646 DOI: 10.1007/978-3-030-35727-6_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epidemiological evidence suggests that exercise improves survival in cancer patients. However, much is still unknown regarding the mechanisms of this positive survival effect and there are indications that exercise may not be universally beneficial for cancer patients. The key to understanding in which situations exercise is beneficial may lie in understanding its influence on the tumour microenvironment (TME)-and conversely, the influence of the tumour on physical functioning. The TME consists of a vast multitude of different cell types, mechanical and chemical stressors and humoral factors. The interplay of these different components greatly influences tumour cell characteristics and, subsequently, tumour growth rate and aggression. Exercise exerts whole-body physiological effects and can directly and indirectly affect the TME. In this chapter, we first discuss the possible role of exercise capacity ('fitness') and exercise adaptability on tumour responsiveness to exercise. We summarise how exercise affects aspects of the TME such as tumour perfusion, vascularity, hypoxia (reduced oxygenation) and immunity. Additionally, we discuss the role of myokines and other circulating factors in eliciting these changes in the TME. Finally, we highlight unanswered questions and key areas for future research in exercise oncology and the TME.
Collapse
Affiliation(s)
- Linda A Buss
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Gabi U Dachs
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand.
| |
Collapse
|
21
|
Ahmeda A, Zangeneh A, Zangeneh MM. Preparation, formulation, and chemical characterization of silver nanoparticles using
Melissa officinalis
leaf aqueous extract for the treatment of acute myeloid leukemia
in vitro
and
in vivo
conditions. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5378] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ahmad Ahmeda
- Department of Basic Medical Sciences, College of Medicine, QU HealthQatar University Doha Qatar
| | - Akram Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| | - Mohammad Mahdi Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| |
Collapse
|
22
|
Hemmati S, Zamenian T, Delsooz N, Zangeneh A, Mahdi Zangeneh M. Preparation and synthesis a new chemotherapeutic drug of silver nanoparticle‐chitosan composite; Chemical characterization and analysis of their antioxidant, cytotoxicity, and anti‐acute myeloid leukemia effects in comparison to Daunorubicin in a leukemic mouse model. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Saba Hemmati
- Department of ChemistryPayame Noor University Tehran Iran
| | - Tara Zamenian
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical ChemistryTehran Medical Sciences, Islamic Azad University Tehran Iran
| | - Newsha Delsooz
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical ChemistryTehran Medical Sciences, Islamic Azad University Tehran Iran
| | - Akram Zangeneh
- Department of Clinical SciencesFaculty of Veterinary MedicineRazi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| | - Mohammad Mahdi Zangeneh
- Department of Clinical SciencesFaculty of Veterinary MedicineRazi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| |
Collapse
|
23
|
Hemmati S, Joshani Z, Zangeneh A, Zangeneh MM. Biosynthesis and chemical characterization of polydopamine‐capped silver nanoparticles for the treatment of acute myeloid leukemia in comparison to doxorubicin in a leukemic mouse model. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Saba Hemmati
- Department of ChemistryPayame Noor University Tehran Iran
| | - Zeinab Joshani
- Department of ChemistryPayame Noor University Tehran Iran
| | - Akram Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| | - Mohammad Mahdi Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| |
Collapse
|
24
|
Hemmati S, Joshani Z, Zangeneh A, Zangeneh MM. Green synthesis and chemical characterization of
Thymus vulgaris
leaf aqueous extract conjugated gold nanoparticles for the treatment of acute myeloid leukemia in comparison to doxorubicin in a leukemic mouse model. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Saba Hemmati
- Department of ChemistryPayame Noor University Tehran Iran
| | - Zeinab Joshani
- Department of ChemistryPayame Noor University Tehran Iran
| | - Akram Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| | - Mohammad Mahdi Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| |
Collapse
|
25
|
Zangeneh MM. Green synthesis and formulation a modern chemotherapeutic drug of
Spinacia oleracea
L.
leaf aqueous extract conjugated silver nanoparticles; Chemical characterization and analysis of their cytotoxicity, antioxidant, and anti‐acute myeloid leukemia properties in comparison to doxorubicin in a leukemic mouse model. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Mohammad Mahdi Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary MedicineRazi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| |
Collapse
|
26
|
Zangeneh MM, Zangeneh A. Novel green synthesis of
Hibiscus sabdariffa
flower extract conjugated gold nanoparticles with excellent anti‐acute myeloid leukemia effect in comparison to daunorubicin in a leukemic rodent model. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5271] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mohammad Mahdi Zangeneh
- Department of Clinical SciencesFaculty of Veterinary Medicine, Razi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| | - Akram Zangeneh
- Department of Clinical SciencesFaculty of Veterinary Medicine, Razi University Kermanshah Iran
- Biotechnology and Medicinal Plants Research CenterIlam University of Medical Sciences Ilam Iran
| |
Collapse
|
27
|
Modifiable Host Factors in Melanoma: Emerging Evidence for Obesity, Diet, Exercise, and the Microbiome. Curr Oncol Rep 2019; 21:72. [PMID: 31263961 DOI: 10.1007/s11912-019-0814-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW We discuss how potentially modifiable factors including obesity, the microbiome, diet, and exercise may impact melanoma development, progression, and therapeutic response. RECENT FINDINGS Obesity is unexpectedly associated with improved outcomes with immune and targeted therapy in melanoma, with early mechanistic data suggesting leptin as one mediator. The gut microbiome is both a biomarker of response to immunotherapy and a potential target. As diet is a major determinant of the gut microbiome, ongoing studies are examining the interaction between diet, the gut microbiome, and immunity. Data are emerging for a potential role of exercise in reducing hypoxia and enhancing anti-tumor immunity, though this has not yet been well-studied in the context of contemporary therapies. Recent data suggests energy balance may play a role in the outcomes of metastatic melanoma. Further studies are needed to demonstrate mechanism and causality as well as the feasibility of targeting these factors.
Collapse
|
28
|
Ramos-Martínez E, Rojas-Serrano J, García-Hernández O, García-Vázquez FJ, Andrade WA, Avila G, Salinas-Pasquier L, López-Vancell MR. The immune response to Hymenolepis nana in mice decreases tumorigenesis induced by 7,12 dimethylbenz-anthracene. Cytokine 2019; 123:154743. [PMID: 31255915 DOI: 10.1016/j.cyto.2019.154743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/15/2019] [Accepted: 06/03/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cancer is a high-impact disease throughout the world. A negative correlation has been established between the development of cancer and the Th2 immune response. Infection by helminth parasites is characterized by the induction of a strong and long-lasting Th2 response. The aim of this work was to evaluate the effect of the immune response induced by the infection with the helminth Hymenolepis nana, on the tumorigenesis induced by dimethylbenz-anthracene (DMBA) in mice. METHODOLOGY Four different groups of 14 female BALB/c mice were formed; Group A, dimethyl sulfoxide (DMSO) (vehicle) was administered cutaneously, Group B infected with H. nana, group C, cutaneously DMBA and finally Group D infected with H. nana and cutaneous DMBA. The tumor load was determined in those animals that developed cancerous lesions. In all groups were determined: serum concentration of IgE, IFNγ, IL-10, IL-5 and malondialdehyde (MDA). The inflammatory infiltrate was analyzed from skin samples and the expression of the main eosinophilic protein and myeloperoxidase was determined. RESULTS The group previously infected with H. nana had a reduced amount of tumors with smaller size, in comparison to the group that received only DMBA; this reduction was associated with lower levels of IFNγ and IL-10, while levels of IgE, IL-5 and MDA were higher. Further, the number of eosinophils and neutrophils was statistically higher in the animals that were previously infected with the helminth and developed less tumors. CONCLUSION The immune response induced by H. nana infection is associated with the reduction of tumors probably due to the activity of eosinophils and neutrophils.
Collapse
Affiliation(s)
- E Ramos-Martínez
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - J Rojas-Serrano
- Servicio Clínico de enfermedades del Intersticio del Pulmón y Reumatología Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosío Villegas", Ciudad de México, Mexico
| | - O García-Hernández
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - F J García-Vázquez
- Instituto Nacional de Pediatría, Laboratorio de Inmunogenética Molecular, Departamento de Análisis Clínicos y Estudios Especiales, México, DF, Mexico
| | - W A Andrade
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - G Avila
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México. Ciudad de México, Mexico
| | - L Salinas-Pasquier
- Servicio de Anatomía Patológica, Unidad de Citopatología. Hospital General de México "Dr. Eduardo Liceaga", Ciudad de México, Mexico
| | - M R López-Vancell
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
29
|
Zhang X, Ashcraft KA, Betof Warner A, Nair SK, Dewhirst MW. Can Exercise-Induced Modulation of the Tumor Physiologic Microenvironment Improve Antitumor Immunity? Cancer Res 2019; 79:2447-2456. [PMID: 31068341 DOI: 10.1158/0008-5472.can-18-2468] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/10/2019] [Accepted: 03/05/2019] [Indexed: 12/12/2022]
Abstract
The immune system plays an important role in controlling cancer growth. However, cancers evolve to evade immune detection. Immune tolerance and active immune suppression results in unchecked cancer growth and progression. A major contributor to immune tolerance is the tumor physiologic microenvironment, which includes hypoxia, hypoglucosis, lactosis, and reduced pH. Preclinical and human studies suggest that exercise elicits mobilization of leukocytes into circulation (also known as "exercise-induced leukocytosis"), especially cytotoxic T cells and natural killer cells. However, the tumor physiologic microenvironment presents a significant barrier for these cells to enter the tumor and, once there, properly function. We hypothesize that the effect of exercise on the immune system's ability to control cancer growth is linked to how exercise affects the tumor physiologic microenvironment. Normalization of the microenvironment by exercise may promote more efficient innate and adaptive immunity within the tumor. This review summarizes the current literature supporting this hypothesis.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Duke University Medical Center, Durham, North Carolina
| | | | | | - Smita K Nair
- Duke University Medical Center, Durham, North Carolina
| | | |
Collapse
|
30
|
Ligibel JA, Dillon D, Giobbie-Hurder A, McTiernan A, Frank E, Cornwell M, Pun M, Campbell N, Dowling RJ, Chang MC, Tolaney S, Chagpar AB, Yung RL, Freedman RA, Dominici LS, Golshan M, Rhei E, Taneja K, Huang Y, Brown M, Winer EP, Jeselsohn R, Irwin ML. Impact of a Pre-Operative Exercise Intervention on Breast Cancer Proliferation and Gene Expression: Results from the Pre-Operative Health and Body (PreHAB) Study. Clin Cancer Res 2019; 25:5398-5406. [DOI: 10.1158/1078-0432.ccr-18-3143] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/08/2019] [Accepted: 04/18/2019] [Indexed: 11/16/2022]
|
31
|
Koelwyn GJ, Quail DF, Zhang X, White RM, Jones LW. Exercise-dependent regulation of the tumour microenvironment. Nat Rev Cancer 2017; 17:620-632. [PMID: 28943640 DOI: 10.1038/nrc.2017.78] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The integrity and composition of the tumour microenvironment (TME) is highly plastic, undergoing constant remodelling in response to instructive signals derived from alterations in the availability and nature of systemic host factors. This 'systemic milieu' is directly modulated by host exposure to modifiable lifestyle factors such as exercise. Host exposure to regular exercise markedly reduces the risk of the primary development of several cancers and might improve clinical outcomes following a diagnosis of a primary disease. However, the molecular mechanisms that underpin the apparent antitumour effects of exercise are poorly understood. In this Opinion article, we explore the putative effects of exercise in reprogramming the interaction between the host and the TME. Specifically, we speculate on the possible effects of exercise on reprogramming 'distant' tissue microenvironments (those not directly involved in the exercise response) by analysing how alterations in the systemic milieu might modulate key TME components to influence cancer hallmarks.
Collapse
Affiliation(s)
- Graeme J Koelwyn
- NYU Langone Medical Center, Marc and Ruti Bell Vascular Biology and Disease Program, Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, New York 10016, USA
| | - Daniela F Quail
- Goodman Cancer Research Centre, McGill University; and at the Department of Physiology, McGill University, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada
| | - Xiang Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine; and at the Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Richard M White
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Lee W Jones
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA; and at the Weil Cornell Medical Center, 1275 York Avenue, New York, New York 10065, USA
| |
Collapse
|
32
|
Bianco TM, Abdalla DR, Desidério CS, Thys S, Simoens C, Bogers JP, Murta EFC, Michelin MA. The influence of physical activity in the anti-tumor immune response in experimental breast tumor. Immunol Lett 2017; 190:148-158. [PMID: 28818640 DOI: 10.1016/j.imlet.2017.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/03/2017] [Accepted: 08/09/2017] [Indexed: 12/31/2022]
Abstract
This study aimed to investigate the influence of physical activity in innate immunity to conduce to an effective antitumoral immune response analyzing the phenotype and activation status of infiltrating cells. We analysed the intracellular cytokines and the transcription factors of tumor infiltrating lymphocytes (TILS) and spleen leukocytes. The Nos2 gene expression was evaluated in spleen cells and futhermore the ROS production was measured and spleen cells; another cell evaluated was dendritic cells (TIDCs), their cytokines expression and membrane molecules; finally to understood the results obtained, we analysed the dendritic cells obtained from bone marrow. Were used female Balb/c mice divided into 4 groups: two controls without tumor, sedentary (GI) and trained (GII) and two groups with tumor, sedentary (GIII) or trained (GIV). The physical activity (PA) was realized acoording swimming protocol. Tumor was induced by injection of 4T1 cells. All experiments were performed in biological triplicate. After the experimental period, the tumor was removed and the cells were identified by flow cytometry with labeling to CD4, CD8, CD11c, CD11b, CD80, CD86 and Ia, and intracelular staining IL-10, IL-12, TNF-α, IFN-γ, IL-17, Tbet, GATA3, RORγt and FoxP3. The bone marrow of the animals was obtained to analyse the derivated DCs by flow cytometry and culture cells to obtain the supernatant to measure the cytokines. Our results demonstrated that the PA inhibit the tumoral growth although not to change the number of TILS, but reduced expression of GATA-3, ROR-γT, related with poor prognosis, and TNF-α intracellular; however occur one significantly reduction in TIDCS, but these cells expressed more co-stimulatory and presentation molecules. Furthermore, we observed that the induced PA stimulated the gene expression of Tbet and the production of inflammatory cytokines suggesting an increase of Th1 systemic response. The results evaluating the systemic influence in DCs showed that the PA improve significantly the number of those cells in bone marrow as well the number of co-stimulatory molecules. Therefore, we could conclude that PA influence the innate immunity by interfering to promote in process of maturation of DCs both in tumor and systemically, that by its turn promote a modification in acquired immune cells, representing by T helper to induce an important alteration transcription factors that are responsible to maintain a suppressive microenviroment, and thereby, allowing the latter cells can thus activate antitumor immune response. The PA was able improve the Th1 systemic response by enhance to Tbet gene expression, promote a slightly increased of Th1-type cytokines and decrease Gata3 and Foxp3 gene expression in which can inhibit the Th1 immune response.
Collapse
Affiliation(s)
- Thiago M Bianco
- Oncology Research Institute (Instituto de Pesquisa em Oncologia-IPON), Federal University of the Triângulo Mineiro (UFTM), Brazil
| | - Douglas R Abdalla
- Oncology Research Institute (Instituto de Pesquisa em Oncologia-IPON), Federal University of the Triângulo Mineiro (UFTM), Brazil
| | - Chamberttan S Desidério
- Oncology Research Institute (Instituto de Pesquisa em Oncologia-IPON), Federal University of the Triângulo Mineiro (UFTM), Brazil
| | - Sofie Thys
- Laboratory of Cell Biology and Histology, University of Antwerp, Belgium
| | - Cindy Simoens
- Laboratory of Cell Biology and Histology, University of Antwerp, Belgium
| | - John-Paul Bogers
- Laboratory of Cell Biology and Histology, University of Antwerp, Belgium
| | - Eddie F C Murta
- Oncology Research Institute (IPON)/Discipline of Gynecology and Obstetrics, UFTM, Brazil
| | - Márcia A Michelin
- Oncology Research Institute (IPON)/Discipline of Immunology, UFTM, Uberaba, Minas Gerais, Brazil.
| |
Collapse
|
33
|
Lonkvist CK, Lønbro S, Vinther A, Zerahn B, Rosenbom E, Primdahl H, Hojman P, Gehl J. Progressive resistance training in head and neck cancer patients during concomitant chemoradiotherapy -- design of the DAHANCA 31 randomized trial. BMC Cancer 2017; 17:400. [PMID: 28578654 PMCID: PMC5457597 DOI: 10.1186/s12885-017-3388-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 05/25/2017] [Indexed: 02/06/2023] Open
Abstract
Background Head and neck cancer patients undergoing concomitant chemoradiotherapy (CCRT) frequently experience loss of muscle mass and reduced functional performance. Positive effects of exercise training are reported for many cancer types but biological mechanisms need further elucidation. This randomized study investigates whether progressive resistance training (PRT) may attenuate loss of muscle mass and functional performance. Furthermore, biochemical markers and muscle biopsies will be investigated trying to link biological mechanisms to training effects. Methods At the Departments of Oncology at Herlev and Aarhus University Hospitals, patients with stage III/IV squamous cell carcinoma of the head and neck, scheduled for CCRT are randomized 1:1 to either a 12-week PRT program or control group, both with 1 year follow-up. Planned enrollment is 72 patients, and stratification variables are study site, sex, p16-status, and body mass index. Primary endpoint is difference in change in lean body mass (LBM) after 12 weeks of PRT, assessed by dual-energy X-ray absorptiometry (DXA). The hypothesis is that 12 weeks of PRT can attenuate the loss of LBM by at least 25%. Secondary endpoints include training adherence, changes in body composition, muscle strength, functional performance, weight, adverse events, dietary intake, self-reported physical activity, quality of life, labor market affiliation, blood biochemistry, plasma cytokine concentrations, NK-cell frequency in blood, sarcomeric protein content in muscles, as well as muscle fiber type and fiber size in muscle biopsies. Muscle biopsies are optional. Discussion This randomized study investigates the impact of a 12-week progressive resistance training program on lean body mass and several other physiological endpoints, as well as impact on adverse events and quality of life. Furthermore, a translational approach is integrated with extensive biological sampling and exploration into cytokines and mechanisms involved. The current paper discusses decisions and methods behind exercise in head and neck cancer patients undergoing concomitant chemoradiotherapy. Trial registration Approved by the Regional Ethics Committee for the Capital Region of Denmark (protocol id: H-15003725) and registered retrospectively at ClinicalTrials.gov (NCT02557529) September 11th 2015. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3388-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camilla K Lonkvist
- Department of Oncology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Simon Lønbro
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark.,Department of Public Health, Section for Sports Science, Aarhus University, Aarhus, Denmark
| | - Anders Vinther
- Department of Rehabilitation, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Bo Zerahn
- Department of Clinical Physiology and Nuclear Medicine, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Eva Rosenbom
- Nutritional Research Unit, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Hanne Primdahl
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Pernille Hojman
- Centre of Inflammation and Metabolism (CIM) and Centre for Physical Activity Research (CFAS), Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Julie Gehl
- Department of Oncology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark.
| |
Collapse
|
34
|
Exercise and the Hallmarks of Cancer. Trends Cancer 2017; 3:423-441. [DOI: 10.1016/j.trecan.2017.04.007] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 04/16/2017] [Accepted: 04/18/2017] [Indexed: 12/15/2022]
|
35
|
Abdalla DR, Gomes BBM, Murta EFC, Michelin MA. Bone marrow-derived dendritic cells under influence of experimental breast cancer and physical activity. Oncol Lett 2017; 13:1406-1410. [PMID: 28454269 DOI: 10.3892/ol.2017.5589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/28/2016] [Indexed: 01/17/2023] Open
Abstract
Immune cells are required in the immune response against tumours, although sometimes without success. The present study aimed to investigate dendritic cell (DC) maturation in animals with induced immunosuppression that were subjected to physical activity (PA). Immunosuppression was induced using 7,12-dimethyl-benzanthracene (DMBA). A total of 56 Balb/c mice were divided into four groups, including the control group, non-DMBA administered/PA group (GII), DMBA administered/non-PA group (GIII) and the DMBA administered/PA group (GIV). Bone marrow was removed from the leg bones following sacrifice. Bone marrow-derived DCs were stimulated to differentiate by granulocyte-macrophage colony-stimulating factor, interleukin (IL)-4 and tumour necrosis factor-α, after which the phenotype was assessed by flow cytometry and the cytokine profile was assessed using ELISAs. PA significantly increased the percentage of DCs in GII (55.38±2.63%) and GIV (50.1±3.1%) mice, as compared with GI (34.61±1.28%) and GIII (36.25±1.85%) mice (P<0.05). In addition, GIV mice showed a significantly higher level of cluster of differentiation (CD) 80+/CD86+ DCs (76.38±6.31%), as compared with GI (54.03±6.52%) and GIII (52.07±5.74%) mice (P<0.05). Furthermore, GIV mice showed a significantly higher level of CD80+/major histocompatibility complex class II double labelling (P<0.05), as compared with GIV (95.35±1.22%) and GIII (76.15±5.53%) mice. The expression of interferon-γ was significantly increased in GIV mice [5.89 (5.2-7.12)], as compared with GIII mice [2.75 (1.33-4.4)] (P<0.05). Similarly, the expression of IL-12 was markedly increased in GIV mice [1.27 (0.26-2.57)] compared with GIII mice [0.73 (0.44-1.47)], although the difference was not significant (P=0.063). The results of the present study suggested that PA was able to promote the maturation of DCs and their secretion of anti-tumour cytokines. Therefore, PA may emerge as a tool in immunotherapy.
Collapse
Affiliation(s)
- Douglas R Abdalla
- Oncology Research Institute, Federal University of the Triângulo Mineiro, Uberaba, MG 38025-180, Brazil
| | - Bruno B M Gomes
- Oncology Research Institute, Federal University of the Triângulo Mineiro, Uberaba, MG 38025-180, Brazil
| | - Eddie F C Murta
- Discipline of Gynecology and Obstetrics, Oncology Research Institute, Federal University of the Triângulo Mineiro, Uberaba, MG 38025-180, Brazil
| | - Márcia A Michelin
- Discipline of Immunology, Oncology Research Institute, Federal University of the Triângulo Mineiro, Uberaba, MG 38025-180, Brazil
| |
Collapse
|
36
|
da Cunha A, Antoniazi Michelin M, Cândido Murta EF. Phenotypic profile of dendritic and T cells in the lymph node of Balb/C mice with breast cancer submitted to dendritic cells immunotherapy. Immunol Lett 2016; 177:25-37. [PMID: 27423825 DOI: 10.1016/j.imlet.2016.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/01/2016] [Accepted: 07/12/2016] [Indexed: 11/25/2022]
Abstract
Breast cancer (BC) is the most common malignant neoplasm and the cause of death by cancer among women worldwide. Its development influenced by various mutations that occur in the tumor cell and by the immune system's status, which has a direct influence on the tumor microenvironment and, consequently, on interactions with non-tumor cells involved in the immunological response. Strategies using dendritic cells (DCs) or antigen-presenting cells (APCs), therapeutic mode, in cancer have been developed for some time. The proper interaction between DCs and T cells upon antigen presentation is of greatest importance for an antitumor immune response activation. Thus, various receptors on the surface of T cells must be able to recognize ligands that are located on the surface of APCs. However, little is known about the real behavior and interaction forms of CDs and T cells after vaccination. Due to the crucial importance of DCs in an effective anti-tumor immune response activation and the search for compliant results in inducing this response by immunotherapies with DCs, the phenotypic profile of DCs and T cells in lymph nodes obtained from female Balb/C mice with breast cancer induced by 4T1 cells and DCs treated with vaccines was investigated. We evaluated through flow cytometry based on the surface and intracellular molecules marking; as well as the presence of cytokines and chemokines, IL-2, IL-4, IL-10, IL-12, IFN-γ, TNF-α and TGF-β in the supernatant of the culture of Balb/C lymph nodes by ELISA. The results show that the vaccination with DCs, in the maturation parameters used in this study, was able to stimulate the secretion of cytokines such as IFN-γ and IL-12 and inhibit the secretion of TGF-β and IL-10 in nodal lymph infiltrates, as well as co-stimulatory activating (CD86) and adhesion molecules in DCs and T cells LFA-1/ICAM-1 and inhibit the secretion of CTLA-4 present in lymph nodes. Facts that led to aTh1 profile polarization, immuno competent in relation to breast cancer. We indirectly evaluated the interaction between DCs and T cells dependent on the vaccination with DCs in tumor draining lymph nodes, in breast cancer in Balb/C mice and we believe that, this way, we will be able to achieve a model vaccine protocol in the future, based on the correct interaction between cells that enable the induction of anti-tumor effective response. Breast cancer (BC) is the most common malignant neoplasm and the cause of death by cancer among women worldwide. Its development influenced by various mutations that occur in the tumor cell and by the immune system's status, which has a direct influence on the tumor microenvironment and, consequently, on interactions with non-tumor cells involved in the immunological response. Strategies using dendritic cells (DCs) or antigen-presenting cells (APCs), therapeutic mode, in cancer have been developed for some time. The proper interaction between DCs and T cells upon antigen presentation is of greatest importance for an antitumor immune response activation. Thus, various receptors on the surface of T cells must be able to recognize ligands that are located on the surface of APCs. However, little is known about the real behavior and interaction forms of DCs and T cells after vaccination. Due to the crucial importance of DCs in an effective anti-tumor immune response activation and the search for compliant results in inducing this response by immunotherapies with DCs, the phenotypic profile of DCs and T cells in lymph nodes obtained from female Balb/C mice with breast cancer induced by 4T1 cells and DCs treated with vaccines was investigated. We evaluated through flow cytometry based on the surface and intracellular molecules marking; as well as the presence of cytokines and chemokines, IL-2, IL-4, IL-10, IL-12, IFN-γ, TNF-α and TGF-β in the supernatant of the culture of Balb/C lymph nodes by ELISA. The results show that the vaccination with DCs, in the maturation parameters used in this study, was able to stimulate the secretion of cytokines such as IFN-γ and IL-12 and inhibit the secretion of TGF-β and IL-10 in nodal lymph infiltrates, as well as co-stimulatory activating (CD86) and adhesion molecules in DCs and T cells LFA-1/ICAM-1 and inhibit the secretion of CTLA-4 present in lymph nodes. Facts that led to aTh1 profile polarization, immuno competent in relation to breast cancer. We indirectly evaluated the interaction between DCs and T cells dependent on the vaccination with DCs in tumor draining lymph nodes, in breast cancer in Balb/C mice and we believe that, this way, we will be able to achieve a model vaccine protocol in the future, based on the correct interaction between cells that enable the induction of anti-tumor effective response.
Collapse
Affiliation(s)
- Alessandra da Cunha
- Research Oncology Institute (IPON), Federal University of the Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, 38025-440, Brazil
| | - Marcia Antoniazi Michelin
- Discipline of Immunology, Federal University of the Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, 38025-440, Brazil
| | - Eddie Fernando Cândido Murta
- Discipline of Gynecology and Obstetrics, Federal University of the Triângulo Mineiro (UFTM), Uberaba, Minas Gerais, 38025-440, Brazil.
| |
Collapse
|
37
|
Koelwyn GJ, Wennerberg E, Demaria S, Jones LW. Exercise in Regulation of Inflammation-Immune Axis Function in Cancer Initiation and Progression. ONCOLOGY (WILLISTON PARK, N.Y.) 2015; 29:908-20, 922. [PMID: 26676894 PMCID: PMC4909049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Pharmacologic manipulation of the immune system is emerging as a viable and robust treatment for some cancer patients. Exercise-induced modulation of the immune system may be another adjunctive strategy for inhibiting tumor initiation and progression. In healthy individuals, exercise has been shown to modulate a number of cell subsets involved in innate and adaptive immunity. Here, we provide an overview of the current state of knowledge pertaining to exercise modulation of the inflammation-immune axis in cancer. The current evidence suggests that exercise may be a promising adjunctive strategy that can favorably alter numerous components of the immune system, which, in turn, may modulate tumorigenesis. However, many important knowledge gaps are evident. To this end, we propose a framework to guide future research efforts investigating the immune effects of exercise in cancer.
Collapse
Affiliation(s)
| | | | | | - Lee W. Jones
- Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
38
|
|