1
|
Chang L, Yin L, Zhang D, Wang C, Li G, Tan C, Zhang X, Su J. MicroRNA-221 promotes tumor progression by targeting HHIP in human glioblastoma. Transl Cancer Res 2022; 10:1073-1081. [PMID: 35116434 PMCID: PMC8799047 DOI: 10.21037/tcr-21-99] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/03/2021] [Indexed: 11/06/2022]
Abstract
Background MicroRNAs are found to be aberrantly expressed in multiple cancers, including glioblastoma (GBM), and microRNA-221 (miR-221) has been verified as an oncogene in various human cancers. Nevertheless, the role of miR-221 in GBM is unclear. This study aimed to investigate the miR-221 expression level in GBM and to evaluate its function and underlying mechanisms. Methods Western blotting and qPCR were used to determine the expression of human hedgehog-interacting protein (HHIP) and miR-221 levels. MiR-221-inhibited cell models were constructed, and siRNA was used for HHIP silencing. Cell proliferation was analyzed by MTT and colony formation assays and a subcutaneous xenograft model. Cell migration and invasion was analyzed by wound healing and Transwell invasion assays. A dual luciferase reporter assay system was used to clarify the relationship between miR-221 and HHIP. Results The results of this study revealed that miR-221 expression was upregulated in GBM tissues and A172, U251, as well as T98G cells, as detected by real-time PCR analysis. MTT, Transwell, and colony formation assays revealed that miR-221 knockdown could suppress GBM cells from proliferating, migrating, and invading in vitro. Moreover, animal experiments showed that tumor growth in vivo was inhibited when miR-221 expression decreased. Furthermore, HHIP was predicted and verified to be a target of miR-221 by bioinformatics analysis, and luciferase and western blot assays. In addition, HHIP silencing rescued the suppressive effect of a miR-221 inhibitor on the proliferation, migration, and invasion of GBM cells. Conclusions Our results indicated that miR-221 is upregulated in GBM and enhances tumor progression by targeting HHIP, which suggests this may be a potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Liang Chang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lisheng Yin
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dongzhi Zhang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chao Wang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guofu Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chunlei Tan
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xuexin Zhang
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jun Su
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
2
|
Yu H, Li E, Liu S, Wu Z, Gao F. Identification of Signature Genes in the PD-1 Relative Gastric Cancer Using a Combined Analysis of Gene Expression and Methylation Data. JOURNAL OF ONCOLOGY 2022; 2022:4994815. [PMID: 36568638 PMCID: PMC9780002 DOI: 10.1155/2022/4994815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The morbidity and mortality rates for gastric cancer (GC) rank second among all cancers, indicating the serious threat it poses to human health, as well as human life. This study aims to identify the pathways and genes as well as investigate the molecular mechanisms of tumor-related genes in gastric cancer (GC). METHOD We compared differentially expressed genes (DEGs) and differentially methylated genes (DMGs) in gastric cancer and normal tissue samples using The Cancer Genome Atlas (TCGA) data. The Kyoto Encyclopedia of Gene and Genome (KEGG) and the Gene Ontology (GO) enrichment analysis' pathway annotations were conducted on DMGs and DEGs using a clusterProfiler R package to identify the important functions, as well as the biological processes and pathways involved. The intersection of the two was chosen and defined as differentially methylated and expressed genes (DMEGs). For DMEGs, we used the principal component analysis (PCA) to differentiate gastric cancer from adjacent samples. The linear discriminant analysis method was applied to categorize the samples using DMEGs methylation data and DMEGs expression profiles data and was validated using the leave-one-out cross-validation (LOOCV) method. We plotted the ROC curve for the classification and calculated the AUC (area under the ROC curve) value for a more intuitive view of the classification effect. We also used the NetworkAnalyst 3.0 tool to analyze DMEGs, using DrugBank to acquire information on protein-drug interactions and generate a network map of gene-drug interactions. RESULTS We identified a total of 971 DMGs in 188 PD-1 negative and 187 PD-1 positive gastric cancer samples obtained from TCGA. The KEGG and GO enrichment analysis showed the involvement of the regulation of ion transmembrane transport, collagen-containing extracellular matrix, cell-cell junction, and peptidase regulator activity. We simultaneously obtained 1,189 DEGs, out of which 986 were downregulated, while 203 were upregulated in tumors. The enriched analysis of the GO's and KEGG's pathways indicated that the most significant pathways included an intestinal immune network for IgA production, Staphylococcus aureus infection, cytokine-cytokine receptor interaction, and viral protein interaction with cytokine and cytokine receptor, which have previously been linked with gastric cancer. The compound DB01830 can bind well to the active site of the LCK protein and shows good stability, thus making it a potential inhibitor of the LCK protein. To observe the relationship between DMEGs' expression and prognosis, we observed 10 genes, among which were TRIM29, TSPAN8, EOMES, PPP1R16B, SELL, PCED1B, IYD, JPH1, CEACAM5, and RP11-44K6.2. Their high expressions were related to high risks. Besides, those genes were validated in different internal and external validation sets. CONCLUSION These results may provide potential molecular biological therapy for PD-1 negative gastric cancer.
Collapse
Affiliation(s)
- Han Yu
- Department of Gastrointestinal Surgery, Meizhou People's Hospital, Huangtang Road, Meijiang District, Meizhou 514031, Guangdong Province, China
| | - En Li
- Department of Gastrointestinal Surgery, Meizhou People's Hospital, Huangtang Road, Meijiang District, Meizhou 514031, Guangdong Province, China
| | - Sha Liu
- Department of Gastrointestinal Surgery, Meizhou People's Hospital, Huangtang Road, Meijiang District, Meizhou 514031, Guangdong Province, China
| | - ZuGuang Wu
- Department of Gastrointestinal Surgery, Meizhou People's Hospital, Huangtang Road, Meijiang District, Meizhou 514031, Guangdong Province, China
| | - FenFei Gao
- Department of Pharmacology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong Province, China
| |
Collapse
|
3
|
Li P, Zhang X, Murphy AJ, Costa M, Zhao X, Sun H. Downregulation of hedgehog-interacting protein (HHIP) contributes to hexavalent chromium-induced malignant transformation of human bronchial epithelial cells. Carcinogenesis 2021; 42:136-147. [PMID: 32710611 DOI: 10.1093/carcin/bgaa085] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 12/25/2022] Open
Abstract
Hexavalent chromium [Cr(VI)] is a potent human lung carcinogen. Multiple mechanisms have been proposed that contribute to Cr(VI)-induced lung carcinogenesis including oxidative stress, DNA damage, genomic instability and epigenetic modulation. However, the molecular mechanisms and pathways mediating Cr(VI) carcinogenicity have not been fully elucidated. Hedgehog (Hh) signaling is a key pathway that plays important roles in the formation of multiple tissues during embryogenesis and in the maintenance of stem cell populations in adults. Dysregulation of Hh signaling pathway has been reported in many human cancers. Here, we report a drastic reduction in both mRNA and protein levels of hedgehog-interacting protein (HHIP), a downstream target and a negative regulator of Hh signaling, in Cr(VI)-transformed cells. These findings point to a potential role of Hh signaling in Cr(VI)-induced malignant transformation and lung carcinogenesis. Cr(VI)-transformed cells exhibited DNA hypermethylation and silencing histone marks in the promoter region of HHIP, indicating that an epigenetic mechanism mediates Cr(VI)-induced silencing of HHIP. In addition, the major targets of Hh signaling (GLI1-3 and PTCH1) were significantly increased in Cr(VI)-transformed cells, suggesting an aberrant activation of Hh signaling in these cells. Moreover, ectopically expressing HHIP not only suppressed Hh signaling but also inhibited cell proliferation and anchorage-independent growth in Cr(VI)-transformed cells. In conclusion, these findings establish a novel regulatory mechanism underlying Cr(VI)-induced lung carcinogenesis and provide new insights for developing a better diagnostic and prognostic strategy for Cr(VI)-related human lung cancer.
Collapse
Affiliation(s)
- Peichao Li
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Environmental Medicine, NYU School of Medicine, New York
| | - Xiaoru Zhang
- Department of Environmental Medicine, NYU School of Medicine, New York
| | - Anthony J Murphy
- Department of Environmental Medicine, NYU School of Medicine, New York
| | - Max Costa
- Department of Environmental Medicine, NYU School of Medicine, New York
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hong Sun
- Department of Environmental Medicine, NYU School of Medicine, New York
| |
Collapse
|
4
|
Song Y, Tu J, Cheng Y, Zhou F, Liu P, Zhou S, Gu Y, Sun Y. HHIP Overexpression Suppresses Human Gastric Cancer Progression and Metastasis by Reducing Its CpG Island Methylation. Front Oncol 2020; 10:1667. [PMID: 33415068 PMCID: PMC7784629 DOI: 10.3389/fonc.2020.01667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/28/2020] [Indexed: 01/15/2023] Open
Abstract
Human hedgehog-interacting protein (HHIP), a negative regulator of hedgehog (HH) signaling pathway, has been reported to be dysregulated in many types of cancer, including gastric cancer. However, the inhibitory role of HHIP as well as the underlying molecular mechanism of HHIP regulation in gastric cancer haven't been fully elucidated yet. In this study, we demonstrated that HHIP overexpression significantly suppressed the proliferation and invasion of AGS cells evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and transwell assays, respectively. Interestingly, methylation-specific polymerase chain reaction (MS-PCR, MSP) showed that HHIP overexpression dramatically decreased its de novo promoter methylation levels in AGS cells. Furthermore, HHIP expression was higher in adjacent non-cancerous tissue compared to matched gastric cancer tissue. High HHIP level was negatively correlated with metastasis (p = 0.035) but not local recurrence (p = 0.58). Taken together, our study suggested that HHIP can modulate gastric cancer progression and metastasis via regulation of its de novo promoter methylation levels in a feedback manner. Lower HHIP levels is positively associated with gastric cancer metastasis, which not only indicates HHIP could be served as a protective marker for gastric cancer, but also suggests restoring HHIP expression might be a potential therapeutic strategy for clinical treatment.
Collapse
Affiliation(s)
- Yu Song
- Department of Oncology, The First People Hospital of Zhangjiagang City, Soochow University, Zhangjiagang, China
| | - Jianchen Tu
- Department of Gastrointestinal Surgery, The First People Hospital of Zhangjiagang City, Soochow University, Zhangjiagang, China
| | - Yanan Cheng
- Department of Oncology, The First People Hospital of Zhangjiagang City, Soochow University, Zhangjiagang, China
| | - Fang Zhou
- Department of Oncology, The First People Hospital of Zhangjiagang City, Soochow University, Zhangjiagang, China
| | - Peilin Liu
- Department of Oncology, The First People Hospital of Zhangjiagang City, Soochow University, Zhangjiagang, China
| | - Shuangshuang Zhou
- Department of Oncology, The First People Hospital of Zhangjiagang City, Soochow University, Zhangjiagang, China
| | - Yongjun Gu
- Department of Oncology, The First People Hospital of Zhangjiagang City, Soochow University, Zhangjiagang, China
| | - Yang Sun
- Department of Oncology, The First People Hospital of Zhangjiagang City, Soochow University, Zhangjiagang, China
| |
Collapse
|
5
|
A novel long noncoding RNA HHIP-AS1 suppresses hepatocellular carcinoma progression through stabilizing HHIP mRNA. Biochem Biophys Res Commun 2019; 520:333-340. [PMID: 31604528 DOI: 10.1016/j.bbrc.2019.09.137] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 09/29/2019] [Indexed: 02/06/2023]
Abstract
Aberrant expression of long non-coding RNAs (lncRNAs) has been observed in hepatocellular carcinoma (HCC) and confirmed to participate in the initiation and progression of HCC. In the present study, we identified a novel functional lncRNA, hedgehog-interacting protein antisense RNA 1 (HHIP-AS1). The expression levels of HHIP-AS1 were significantly decreased in HCC tissues. Downregulation of HHIP-AS1 expression correlated with larger tumor size, metastasis, and advanced TNM stage, and also predicted worse overall survival rate of HCC patients. Through performing overexpression and knockdown experiments, the biological function of HHIP-AS1 was identified to suppress HCC cell proliferation, migration and invasion, while promote apoptosis. Further investigation showed that HHIP-AS1 interacted with and positively regulated the stability of HHIP mRNA in a HuR-dependent manner. HHIP-AS1 exerted its suppressive effects through HHIP. Taken together, our findings demonstrate that HHIP-AS1 represses HCC progression by promoting HHIP expression, and indicate that the use of HHIP-AS1 may offer a promising treatment for HCC patients.
Collapse
|
6
|
Niyaz M, Khan MS, Mudassar S. Hedgehog Signaling: An Achilles' Heel in Cancer. Transl Oncol 2019; 12:1334-1344. [PMID: 31352196 PMCID: PMC6664200 DOI: 10.1016/j.tranon.2019.07.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 12/15/2022] Open
Abstract
Hedgehog signaling pathway originally identified in the fruit fly Drosophila is an evolutionarily conserved signaling mechanism with crucial roles in embryogenesis, growth and patterning. It exerts its biological effect through a signaling mechanism that terminates at glioma-associated oncogene (GLI) transcription factors which alternate between activator and repressor forms and mediate various responses. The important components of the pathway include the hedgehog ligands (SHH), the Patched (PTCH) receptor, Smoothened (SMO), Suppressor of Fused (SuFu) and GLI transcription factors. Activating or inactivating mutations in key genes cause uncontrolled activation of the pathway in a ligand independent manner. The ligand-dependent aberrant activation of the hedgehog pathway causing overexpression of hedgehog pathway components and its target genes occurs in autocrine as well as paracrine fashion. In adults, aberrant activation of hedgehog signaling has been linked to birth defects and multiple solid cancers. In this review, we assimilate data from recent studies to understand the mechanism of functioning of the hedgehog signaling pathway, role in cancer, its association in various solid malignancies and the current strategies being used to target this pathway for cancer treatment.
Collapse
Affiliation(s)
- Madiha Niyaz
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Soura, - 190011 Srinagar, Kashmir
| | - Mosin S Khan
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Soura, - 190011 Srinagar, Kashmir
| | - Syed Mudassar
- Department of Clinical Biochemistry, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Soura, - 190011 Srinagar, Kashmir.
| |
Collapse
|
7
|
The triazole linked galactose substituted dicyano compound can induce autophagy in NSCLC cell lines. Gene 2019; 712:143935. [DOI: 10.1016/j.gene.2019.06.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/11/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
|
8
|
Suwanmanee S, Mahakhunkijcharoen Y, Ampawong S, Leaungwutiwong P, Missé D, Luplertlop N. Inhibition of N-myristoyltransferase1 affects dengue virus replication. Microbiologyopen 2019; 8:e00831. [PMID: 30848105 PMCID: PMC6741125 DOI: 10.1002/mbo3.831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 01/05/2023] Open
Abstract
Dengue virus (DENV) causes dengue fever, a self‐limiting disease that could be fatal due to serious complications. No specific treatment is currently available and the preventative vaccine is only partially protective. To develop a potential drug target for dengue fever, we need to understand its biology and pathogenesis thoroughly. N‐myristoyltransferase (NMT) is an N‐terminal protein lipidation enzyme that catalyzes the covalent cotranslational attachment of fatty acids to the amino‐terminal glycine residue of a number of proteins, leading to the modulation of various signaling molecules. In this study, we investigated the interaction of dengue viral proteins with host NMT and its subsequent effect on DENV. Our bioinformatics, molecular docking, and far‐western blotting analyses demonstrated the interaction of viral envelope protein (E) with NMT. The gene expression of NMT was strongly elevated in a dependent manner during the viral replication phase in dendritic cells. Moreover, NMT gene silencing significantly inhibited DENV replication in dendritic cells. Further studies investigating the target cell types of other host factors are suggested.
Collapse
Affiliation(s)
- San Suwanmanee
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Yuvadee Mahakhunkijcharoen
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pornsawan Leaungwutiwong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Dorothée Missé
- MIVEGEC UMR 224, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Natthanej Luplertlop
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
9
|
Sun H, Ni SJ, Ye M, Weng W, Zhang Q, Zhang M, Tan C, Wang L, Huang D, Du X, Xu M, Sheng W. Hedgehog Interacting Protein 1 is a Prognostic Marker and Suppresses Cell Metastasis in Gastric Cancer. J Cancer 2018; 9:4642-4649. [PMID: 30588248 PMCID: PMC6299386 DOI: 10.7150/jca.27686] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/14/2018] [Indexed: 01/22/2023] Open
Abstract
Background: The gene Hedgehog interacting protein (HHIP) is a pivotal morphogen for multiple developmental processes. However, the expression and clinical correlation of HHIP in gastric cancer (GC) has not been fully investigated. Here, we aimed to explore the expression of HHIP in gastric cancer (GC) and evaluate its clinicopathological and functional correlations. Methods: The expression of HHIP mRNA was first determined in the Human Protein Atlas (HPA) and The Cancer Genome Atlas (TCGA) GC database and then validated by RT-qPCR (n = 41) and immunohistochemistry (IHC, n = 95) in a cohort of in-house GC patients and in 29 cases of gastric intraepithelial neoplasia (GIN). The clinicopathological and functional relationship of HHIP with GC were also analyzed. Results: We found that HHIP mRNA were significantly downregulated in GC in the TCGA and HPA databases, as well as in our in-house cohort (P < 0.05). HHIP mRNA is mainly located in the cell nucleus, while HHIP protein is mainly located in the cell cytoplasm. Moreover, the HHIP protein level in the GIN tissues was significantly higher than that in the GC tissues (P < 0.001) and significantly lower than that in adjacent normal controls (P < 0.001). In addition, low HHIP expression was correlated with lymphatic metastasis (P = 0.041), pTNM stage (P = 0.007) and nervous system invasion (P = 0.001). Furthermore, we observed strong positive correlations between HHIP protein expression and overall survival (P < 0.001) and disease-free survival (P = 0.027) in GC patients. HHIP protein expression was an independent prognostic factor for overall survival (P < 0.001). Functional experimental results showed that overexpression of HHIP attenuated the migration and invasion ability of GC cells (P < 0.01). Conclusion: HHIP may be a promising tumor metastatic-suppressor and prognostic biomarker for gastric cancer.
Collapse
Affiliation(s)
- Hui Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Shu Juan Ni
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Min Ye
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Weiwei Weng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Qiongyan Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Meng Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Cong Tan
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Lei Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Dan Huang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Xiang Du
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Weiqi Sheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institute of Pathology, Fudan University, Shanghai 200032, China
| |
Collapse
|
10
|
Sabol M, Trnski D, Musani V, Ozretić P, Levanat S. Role of GLI Transcription Factors in Pathogenesis and Their Potential as New Therapeutic Targets. Int J Mol Sci 2018; 19:2562. [PMID: 30158435 PMCID: PMC6163343 DOI: 10.3390/ijms19092562] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/17/2018] [Accepted: 08/25/2018] [Indexed: 02/05/2023] Open
Abstract
GLI transcription factors have important roles in intracellular signaling cascade, acting as the main mediators of the HH-GLI signaling pathway. This is one of the major developmental pathways, regulated both canonically and non-canonically. Deregulation of the pathway during development leads to a number of developmental malformations, depending on the deregulated pathway component. The HH-GLI pathway is mostly inactive in the adult organism but retains its function in stem cells. Aberrant activation in adult cells leads to carcinogenesis through overactivation of several tightly regulated cellular processes such as proliferation, angiogenesis, EMT. Targeting GLI transcription factors has recently become a major focus of potential therapeutic protocols.
Collapse
Affiliation(s)
- Maja Sabol
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Diana Trnski
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Vesna Musani
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Sonja Levanat
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
11
|
HHIPL-1 (rs2895811) gene polymorphism is associated with cardiovascular risk factors and cardiometabolic parameters in Mexicans patients with myocardial infarction. Gene 2018; 663:34-40. [DOI: 10.1016/j.gene.2018.04.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/23/2018] [Accepted: 04/12/2018] [Indexed: 01/08/2023]
|
12
|
Wils LJ, Bijlsma MF. Epigenetic regulation of the Hedgehog and Wnt pathways in cancer. Crit Rev Oncol Hematol 2018; 121:23-44. [DOI: 10.1016/j.critrevonc.2017.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022] Open
|
13
|
Lin EH, Kao YR, Lin CA, Kuo TY, Yang SP, Hsu CF, Chou TY, Ho CC, Wu CW. Hedgehog pathway maintains cell survival under stress conditions, and drives drug resistance in lung adenocarcinoma. Oncotarget 2016; 7:24179-93. [PMID: 27015549 PMCID: PMC5029693 DOI: 10.18632/oncotarget.8253] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 03/02/2016] [Indexed: 01/06/2023] Open
Abstract
Hedgehog (HH) pathway plays an important role in embryonic development, but is largely inactive in adult except for tissue repair. Aberrant activation of HH pathway has been found in a variety of cancer types. In non-small cell lung cancer, however, the role and importance of HH pathway remain controversial. In the current study, we found that HH pathway was maintained in low activity in lung adenocarcinoma (LAC) cells under normal culture condition, but was highly induced in response to stress conditions. Activation of HH pathway promoted cell survival, growth, and invasion partially through HGF and MET signaling. Hedgehog-Interacting Protein (HHIP), a cell-surface negative regulator of HH pathway, was epigenetically silenced in LAC. Overexpression of HHIP blocked the activation of HH and HGF/MET pathways, and made cells significantly more susceptible to stress conditions. In LAC cells with acquired resistance to Epidermal Growth Factor Receptor Tyrosin Kinase Inhibitor (EGFR-TKI), we found that a part of tumor cells were much more sensitive to HH or HGF/MET inhibitors, suggesting an oncogenic addiction shift from EGFR to HH and HGF/MET pathways. In conclusion, this study showed that HH pathway is a survival signaling that drives LAC cell growth under stress conditions, and HHIP is a key regulator to block the induction of HH pathway. Targeting the HH pathway through inhibitors or HHIP thus holds promise to address EGFR-TKI resistance in LAC in clinic.
Collapse
Affiliation(s)
- Erh-Hsuan Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Microbiology and Immunology, National Yang Ming University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei, Taiwan
| | - Yu-Rung Kao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chih-An Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University Medical College, Taipei, Taiwan
| | - Ting-Yu Kuo
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei, Taiwan
| | - Sheng-Ping Yang
- Institute of Microbiology and Immunology, National Yang Ming University, Taipei, Taiwan
| | - Chiung-Fang Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Teh-Ying Chou
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, Taiwan
| | - Cheng-Wen Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Microbiology and Immunology, National Yang Ming University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, Taipei, Taiwan
| |
Collapse
|
14
|
Zhao MY, Yu Y, Xie M, Yang MH, Zhu S, Yang LC, Kang R, Tang DL, Zhao LL, Cao LZ. Digital gene expression profiling analysis of childhood acute lymphoblastic leukemia. Mol Med Rep 2016; 13:4321-8. [PMID: 27053012 DOI: 10.3892/mmr.2016.5089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/07/2016] [Indexed: 11/06/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most commonly diagnosed malignancy in children. It is a heterogeneous disease, and is determined by multiple gene alterations and chromosomal rearrangements. To improve current understanding of the underlying molecular mechanisms of ALL, the present study profiled genome‑wide digital gene expression (DGE) in a population of children with ALL in China. Using second‑generation sequencing technology, the profiling revealed that 2,825 genes were upregulated and 1,952 were downregulated in the ALL group. Based on the DGE profiling data, the present study further investigated seven genes (WT1, RPS26, MSX1, CD70, HOXC4, HOXA5 and HOXC6) using reverse transcription‑quantitative polymerase chain reaction analysis. Gene Ontology analysis suggested that the differentially expressed genes were predominantly involved in immune cell differentiation, metabolic processes and programmed cell death. The results of the present study provided novel insights into the gene expression patterns in children with ALL.
Collapse
Affiliation(s)
- Ming-Yi Zhao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Min Xie
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ming-Hua Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shan Zhu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410006, P.R. China
| | - Liang-Chun Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Rui Kang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Dao-Lin Tang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ling-Ling Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410006, P.R. China
| | - Li-Zhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|