1
|
Synergistic Effects of the Combinational Use of Escitalopram Oxalate and 5-Fluorouracil on the Inhibition of Gastric Cancer SNU-1 Cells. Int J Mol Sci 2022; 23:ijms232416179. [PMID: 36555820 PMCID: PMC9781210 DOI: 10.3390/ijms232416179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Owing to its high recurrence rate, gastric cancer (GC) is the leading cause of tumor-related deaths worldwide. Besides surgical treatment, chemotherapy is the most commonly used treatment against GC. However, the adverse events associated with chemotherapy use limit its effectiveness in GC treatment. In this study, we investigated the effects of using combinations of low-dose 5-fluorouracil (5-FU; 0.001 and 0.01 mM) with different concentrations of escitalopram oxalate (0.01, 0.02, 0.06, and 0.2 mM) to evaluate whether the assessed combination would have synergistic effects on SNU-1 cell survival. 5-FU (0.01 mM) + escitalopram oxalate (0.02 mM) and 5-FU (0.01 mM) + escitalopram oxalate (0.06 mM) administered over 24 h showed synergistic effects on the inhibition of SNU-1 cell proliferation. Moreover, 5-FU (0.001 mM) + escitalopram oxalate (0.02 or 0.06 mM) and 5-FU (0.01 mM) + escitalopram oxalate (0.02, 0.06, or 0.2 mM) administered over 48 h showed synergistic effects on the inhibition of SNU-1 cell proliferation. Compared with controls, SNU-1 cells treated with 5-FU (0.01 mM) + escitalopram oxalate (0.02 mM) exhibited significantly increased levels of annexin V staining, reactive oxygen species, cleaved poly (ADP-ribose) polymerase, and caspase-3 proteins. Furthermore, 5-FU (12 mg/kg) + escitalopram oxalate (12.5 mg/kg) significantly attenuated xenograft SNU-1 cell proliferation in nude mice. Our study is the first to report the synergistic effects of the combinational use of low-dose 5-FU and escitalopram oxalate on inhibiting SNU-1 cell proliferation. These findings may be indicative of an alternative option for GC treatment.
Collapse
|
2
|
Therapeutic Efficacy of ABN401, a Highly Potent and Selective MET Inhibitor, Based on Diagnostic Biomarker Test in MET-Addicted Cancer. Cancers (Basel) 2020; 12:cancers12061575. [PMID: 32549194 PMCID: PMC7352216 DOI: 10.3390/cancers12061575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 11/24/2022] Open
Abstract
The receptor tyrosine kinase c-MET regulates processes essential for tissue remodeling and mammalian development. The dysregulation of c-MET signaling plays a role in tumorigenesis. The aberrant activation of c-MET, such as that caused by gene amplification or mutations, is associated with many cancers. c-MET is therefore an attractive therapeutic target, and inhibitors are being tested in clinical trials. However, inappropriate patient selection criteria, such as low amplification or expression level cut-off values, have led to the failure of clinical trials. To include patients who respond to MET inhibitors, the selection criteria must include MET oncogenic addiction. Here, the efficacy of ABN401, a MET inhibitor, was investigated using histopathologic and genetic analyses in MET-addicted cancer cell lines and xenograft models. ABN401 was highly selective for 571 kinases, and it inhibited c-MET activity and its downstream signaling pathway. We performed pharmacokinetic profiling of ABN401 and defined the dose and treatment duration of ABN401 required to inhibit c-MET phosphorylation in xenograft models. The results show that the efficacy of ABN401 is associated with MET status and they highlight the importance of determining the cut-off values. The results suggest that clinical trials need to establish the characteristics of each sample and their correlations with the efficacy of MET inhibitors.
Collapse
|
3
|
Frigault MM, Markovets A, Nuttall B, Kim KM, Park SH, Gangolli EA, Mortimer PGS, Hollingsworth SJ, Hong JY, Kim K, Kim ST, Barrett JC, Lee J. Mechanisms of Acquired Resistance to Savolitinib, a Selective MET Inhibitor in MET-Amplified Gastric Cancer. JCO Precis Oncol 2020; 4:1900386. [PMID: 32923890 PMCID: PMC7446425 DOI: 10.1200/po.19.00386] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2020] [Indexed: 01/07/2023] Open
Abstract
PURPOSE Some gastric cancers harbor MET gene amplifications that can be targeted by selective MET inhibitors to achieve tumor responses, but resistance eventually develops. Savolitinib, a selective MET inhibitor, is beneficial for treating patients with MET-driven gastric cancer. Understanding the resistance mechanisms is important for optimizing postfailure treatment options. PATIENTS AND METHODS Here, we identified the mechanisms of acquired resistance to savolitinib in 3 patients with gastric cancer and MET-amplified tumors who showed a clinical response and then cancer progression. Longitudinal circulating tumor DNA (ctDNA) is useful for monitoring resistance during treatment and progression when rebiopsy cannot be performed. RESULTS Using a next-generation sequencing 100-gene panel, we identified the target mechanisms of resistance MET D1228V/N/H and Y1230C mutations or high copy number MET gene amplifications that emerge when resistance to savolitinib develops in patients with MET-amplified gastric cancer. CONCLUSION We demonstrated the utility of ctDNA in gastric cancer and confirmed this approach using baseline tumor tissue or rebiopsy.
Collapse
Affiliation(s)
| | | | | | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se Hoon Park
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | - Jung Yong Hong
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung Kim
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Tae Kim
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Jeeyun Lee
- Department of Medicine, Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther 2020; 5:22. [PMID: 32296018 PMCID: PMC7082344 DOI: 10.1038/s41392-020-0116-z] [Citation(s) in RCA: 979] [Impact Index Per Article: 195.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is among the most lethal and prevalent malignancies in the world and was responsible for nearly 881,000 cancer-related deaths in 2018. Surgery and chemotherapy have long been the first choices for cancer patients. However, the prognosis of CRC has never been satisfying, especially for patients with metastatic lesions. Targeted therapy is a new optional approach that has successfully prolonged overall survival for CRC patients. Following successes with the anti-EGFR (epidermal growth factor receptor) agent cetuximab and the anti-angiogenesis agent bevacizumab, new agents blocking different critical pathways as well as immune checkpoints are emerging at an unprecedented rate. Guidelines worldwide are currently updating the recommended targeted drugs on the basis of the increasing number of high-quality clinical trials. This review provides an overview of existing CRC-targeted agents and their underlying mechanisms, as well as a discussion of their limitations and future trends.
Collapse
Affiliation(s)
- Yuan-Hong Xie
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China.
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, 200001, Shanghai, China.
| |
Collapse
|
5
|
Park JB, Lee JS, Lee MS, Cha EY, Kim S, Sul JY. Corosolic acid reduces 5‑FU chemoresistance in human gastric cancer cells by activating AMPK. Mol Med Rep 2018; 18:2880-2888. [PMID: 30015846 PMCID: PMC6102703 DOI: 10.3892/mmr.2018.9244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/27/2018] [Indexed: 12/25/2022] Open
Abstract
5‑Fluorouracil (5‑FU) is one of the most commonly used chemotherapeutic agents for gastric cancer. Resistance to 5‑FU‑based chemotherapy remains the major obstacle in the treatment of gastric cancer. A growing body of evidence has suggested that adenosine monophosphate‑activated protein kinase (AMPK) is pivotal for chemoresistance. However, the mechanism by which AMPK regulates the chemosensitivity of gastric cancer remains unclear. In the present study, how corosolic acid enhanced the chemosensitivity of gastric cancer cells to 5‑FU via AMPK activation was investigated. A 5‑FU‑resistant gastric cancer cell line (SNU‑620/5‑FUR) was established, which had a marked increase in thymidine synthase (TS) expression but reduced AMPK phosphorylation when compared with the parental cell line, SNU‑620. AMPK regulation by 5‑aminoimidazole‑4‑carboxamide ribonucleotide or compound c was revealed to be markedly associated with TS expression and 5‑FU‑resistant cell viability. In addition, corosolic acid activated AMPK, and decreased TS expression and the phosphorylation of mammalian target of rapamycin/4E‑binding protein 1 in a dose‑dependent manner. Corosolic acid treatment significantly reduced cell viability while compound c reversed corosolic acid‑induced cell growth inhibition. The 5‑FU‑resistance sensitization effect of corosolic acid was determined by the synergistic reduction of TS expression and inhibition of cell viability in the presence of 5‑FU. The corosolic acid‑induced AMPK activation was markedly increased by additional 5‑FU treatment, while compound c reversed AMPK phosphorylation. In addition, compound c treatment reversed corosolic acid‑induced apoptotic markers such as capase‑3 and PARP cleavage, and cytochrome c translocation to cytosol, in the presence of 5‑FU. Corosolic acid treatment in the presence of 5‑FU induced an increase in the apoptotic cell population based on flow cytometry analysis. This increase was abolished by compound c. In conclusion, these results implied that corosolic acid may have therapeutic potential to sensitize the resistance of gastric cancer to 5‑FU by activating AMPK.
Collapse
Affiliation(s)
- Jun Beom Park
- Department of Surgery, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Jin Sun Lee
- Department of Surgery, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Myung Sun Lee
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Eun Young Cha
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Soyeon Kim
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Ji Young Sul
- Department of Surgery, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| |
Collapse
|
6
|
Anestis A, Zoi I, Karamouzis MV. Current advances of targeting HGF/c-Met pathway in gastric cancer. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:247. [PMID: 30069449 PMCID: PMC6046293 DOI: 10.21037/atm.2018.04.42] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 04/18/2018] [Indexed: 12/18/2022]
Abstract
Despite the advances in systemic chemotherapy, gastric adenocarcinoma (GC) remains the third most common cause of cancer-related deaths with poor prognosis. The heterogeneity of GC indicates that novel biomarkers should be established in order to further classify tumors and develop individual targeted therapies. High-quality preclinical and clinical research has demonstrated that growth factor (HGF)-hepatocyte growth factor receptor (c-Met) pathway plays a pivotal role on the growth, survival and invasiveness of GC. In particular, aberrant activation of HGF/c-Met signaling pathway has been associated with poor clinical outcomes, suggesting the therapeutic potential of c-Met. This has stimulated the development and evaluation of a number of c-Met targeted agents in an advance disease setting. In this review, we summarize the current state of the art in the advances on the inhibition of c-Met pathway, with particular emphasis on the clinical testing of c-Met targeted therapeutic agents. Furthermore, we discuss the challenges facing the incorporation of c-Met targeted agents in randomized trials, with the idea that the definition of the appropriate genetic and molecular context for the use of these agents remains the priority.
Collapse
Affiliation(s)
- Aristomenis Anestis
- Molecular Oncology Unit, Department of Biological Chemistry, ‘Laiko’ General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ilianna Zoi
- Molecular Oncology Unit, Department of Biological Chemistry, ‘Laiko’ General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Michalis V. Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, ‘Laiko’ General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Internal Medicine, ‘Laiko’ General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Becnel LB, Ochsner SA, Darlington YF, McOwiti A, Kankanamge WH, Dehart M, Naumov A, McKenna NJ. Discovering relationships between nuclear receptor signaling pathways, genes, and tissues in Transcriptomine. Sci Signal 2017; 10:10/476/eaah6275. [DOI: 10.1126/scisignal.aah6275] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Targeting c-MET in gastrointestinal tumours: rationale, opportunities and challenges. Nat Rev Clin Oncol 2017; 14:562-576. [PMID: 28374784 DOI: 10.1038/nrclinonc.2017.40] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Data from many preclinical studies, including those using cellular models of colorectal, gastric, gastro-oesophageal and gastro-oesophageal junction cancers, indicate that the hepatocyte growth factor (HGF)-hepatocyte growth factor receptor (c-MET) pathway is vital for the growth, survival and invasive potential of gastrointestinal cancers. Following the availability of data from these various studies, and data on c-MET expression as a biomarker that indicates a poor prognosis in patients with gastrointestinal cancer and increased c-MET expression, inhibitors targeting this pathway have entered the clinic in the past decade. However, the design of clinical trials that incorporate the use of HGF/c-MET inhibitors in their most appropriate genetic and molecular context remains crucial. Recognizing and responding to this challenge, the European Commission funded Framework 7 MErCuRIC programme is running a biomarker-enriched clinical trial investigating the efficacy of combined c-MET/MEK inhibition in patients with RAS-mutant or RAS-wild-type metastatic colorectal cancer with aberrant c-MET expression. The design of this trial enables the continued refinement of the predictive biomarker and co-development of companion diagnostics. In this Review, we focus on advances in our understanding of inhibition of the HGF/c-MET pathway in patients with gastro-intestinal cancers, the prominent challenges facing the clinical translation and implementation of agents targeting HGF/c-MET, and discuss the various efforts, and associated obstacles to the discovery and validation of biomarkers that will enable patient stratification in this context.
Collapse
|
9
|
Chen QN, Wei CC, Wang ZX, Sun M. Long non-coding RNAs in anti-cancer drug resistance. Oncotarget 2017; 8:1925-1936. [PMID: 27713133 PMCID: PMC5352108 DOI: 10.18632/oncotarget.12461] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 09/16/2016] [Indexed: 12/20/2022] Open
Abstract
Chemotherapy is one of the basic treatments for cancers; however, drug resistance is mainly responsible for the failure of clinical treatment. The mechanism of drug resistance is complicated because of interaction among various factors including drug efflux, DNA damage repair, apoptosis and targets mutation. Long non-coding RNAs (lncRNAs) have been a focus of research in the field of bioscience, and the latest studies have revealed that lncRNAs play essential roles in drug resistance in breast cancer, gastric cancer and lung cancer, et al. Dysregulation of multiple targets and pathways by lncRNAs results in the occurrence of chemoresistance. In this review, we will discuss the mechanisms underlying lncRNA-mediated resistance to chemotherapy and the therapeutic potential of lncRNAs in future cancer treatment.
Collapse
Affiliation(s)
- Qin-nan Chen
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chen-chen Wei
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhao-xia Wang
- Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ming Sun
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
10
|
Kang Y, Hu W, Bai E, Zheng H, Liu Z, Wu J, Jin R, Zhao C, Liang G. Curcumin sensitizes human gastric cancer cells to 5-fluorouracil through inhibition of the NFκB survival-signaling pathway. Onco Targets Ther 2016; 9:7373-7384. [PMID: 27980427 PMCID: PMC5147405 DOI: 10.2147/ott.s118272] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fluorouracil (5-FU) is the most commonly used chemotherapeutic agent for gastric cancer (GC). However, the occurrence of resistance to 5-FU treatment poses a major problem for its clinical efficacy. In this study, we found that the NFκB-signaling pathway can mediate 5-FU resistance in GC cells. We developed a 5-FU-resistant GC cell line named SGCR/5-FU and found that the 5-FU-induced resistance increased cytosolic IκBα degradation and promoted NFκB nuclear translocation in GC cells. These findings were further confirmed by the activation of the NFκB survival-signaling pathway in clinical specimens. Curcumin, a natural compound, can reverse 5-FU resistance and inhibits proliferation in GC cells by downregulating the NFκB-signaling pathway. Moreover, it can also decrease the expression level of TNFα messenger RNA. Flow cytometry and Western blot analysis results showed that the combination of curcumin and 5-FU caused synergistic inhibition of growth and induction of potent apoptosis in the resistant cancer cell lines in vitro. In conclusion, our results demonstrate that the combination of 5-FU and curcumin could be further developed as a potential therapy for human GC.
Collapse
Affiliation(s)
- Yanting Kang
- Chemical Biology Research Center, School of Pharmaceutical Sciences
- Department of Epidemiology, First Affiliated Hospital
| | - Wanle Hu
- Department of Coloproctology, Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Encheng Bai
- Chemical Biology Research Center, School of Pharmaceutical Sciences
- Department of Epidemiology, First Affiliated Hospital
| | - Hailun Zheng
- Chemical Biology Research Center, School of Pharmaceutical Sciences
| | - Zhiguo Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences
| | - Jianzhang Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences
| | - Rong Jin
- Department of Epidemiology, First Affiliated Hospital
| | - Chengguang Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences
| |
Collapse
|