1
|
Lan Y, Zhao S, Hou T, Ren Y, Tang J, Yin S, Wu Y. Mechanism of HIF-1α promoting proliferation, invasion and metastasis of nasopharyngeal carcinoma by regulating MMP-2 in hypoxic microenvironment. Heliyon 2024; 10:e40760. [PMID: 39691198 PMCID: PMC11650291 DOI: 10.1016/j.heliyon.2024.e40760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
Objective To explore the mechanism of HIF-1α promoting the proliferation, invasion and metastasis of nasopharyngeal carcinoma cells by regulating the expression of MMP-2. Methods 30 nasopharyngeal carcinoma tissues and 30 normal nasopharyngeal epithelial tissues were collected, and the expression of HIF-1α and MMP-2 in the nasopharyngeal carcinoma, normal nasopharyngeal epithelial tissues and their hypoxic environment were systematically analyzed by qRT-PCR and western blot techniques. Lentivirus transfection technology was used to regulate the expression of HIF-1α and MMP-2 genes in the HONE1 cell line under hypoxic environment, and to explore the interaction mechanism of HIF-1α and MMP-2 genes and their role in the proliferation, invasion and metastasis of nasopharyngeal carcinoma. Furthermore, the cytological behavior changes regulated by HIF-1α and MMP-2 genes were further explored by gene chip technology. Results The expressions of HIF-1α and MMP-2 in nasopharyngeal carcinoma tissues were significantly higher than those in normal nasopharyngeal epithelial tissues (P < 0.05). Compared with normoxic group, the expression of HIF-1α and MMP-2 in the nasopharyngeal carcinoma cell line HONE1 increased in hypoxic group (P < 0.05). Compared with NC-siRNA group, the expression of HIF-1α in si-HIF-1α group decreased, and the cell proliferation ability and invasion and metastasis ability decreased (P < 0.05). PCR array analysis revealed that the mRNA expressions of FAS, BRCA1, TIMP-1 genes were up-regulated in nasopharyngeal carcinoma HONE1 cells with HIF-1α gene silencing. AKT1, VEGFA, MET, MMP-2, MMP-9 and MTA2 were down-regulated. Compared with NC-siRNA group, the expression of MMP-2 in si-MMP-2 group decreased, and the ability of cell proliferation and invasion and metastasis decreased (P < 0.05). Conclusion HIF-1α could inhibit the proliferation, invasion and metastasis of nasopharyngeal carcinoma by regulating the expression of MMP-2, thus inhibiting tumor growth. Therefore, HIF-1α and MMP-2 might become important therapeutic targets to inhibit the growth, invasion and metastasis of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Ying Lan
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shijie Zhao
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tao Hou
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yi Ren
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jun Tang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shihua Yin
- Department of Otolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yang Wu
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
2
|
Almasi S, SarmastiEmami S, Baird S, Ning Z, Figeys D, Côté J, Cowan KN, Jasmin BJ. Staufen1 controls mitochondrial metabolism via HIF2α in embryonal rhabdomyosarcoma and promotes tumorigenesis. Cell Mol Life Sci 2023; 80:328. [PMID: 37847286 PMCID: PMC11071833 DOI: 10.1007/s00018-023-04969-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023]
Abstract
Elevated mitochondrial metabolism promotes tumorigenesis of Embryonal Rhabdomyosarcomas (ERMS). Accordingly, targeting oxidative phosphorylation (OXPHOS) could represent a therapeutic strategy for ERMS. We previously demonstrated that genetic reduction of Staufen1 (STAU1) levels results in the inhibition of ERMS tumorigenicity. Here, we examined STAU1-mediated mechanisms in ERMS and focused on its potential involvement in regulating OXPHOS. We report the novel and differential role of STAU1 in mitochondrial metabolism in cancerous versus non-malignant skeletal muscle cells (NMSkMCs). Specifically, our data show that STAU1 depletion reduces OXPHOS and inhibits proliferation of ERMS cells. Our findings further reveal the binding of STAU1 to several OXPHOS mRNAs which affects their stability. Indeed, STAU1 depletion reduced the stability of OXPHOS mRNAs, causing inhibition of mitochondrial metabolism. In parallel, STAU1 depletion impacted negatively the HIF2α pathway which further modulates mitochondrial metabolism. Exogenous expression of HIF2α in STAU1-depleted cells reversed the mitochondrial inhibition and induced cell proliferation. However, opposite effects were observed in NMSkMCs. Altogether, these findings revealed the impact of STAU1 in the regulation of mitochondrial OXPHOS in cancer cells as well as its differential role in NMSkMCs. Overall, our results highlight the therapeutic potential of targeting STAU1 as a novel approach for inhibiting mitochondrial metabolism in ERMS.
Collapse
Affiliation(s)
- Shekoufeh Almasi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Sahar SarmastiEmami
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Stephen Baird
- High Throughput Lab, CHEO, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
| | - Zhibin Ning
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Daniel Figeys
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- The Eric J. Poulin Centre for Neuromuscular Diseases, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Kyle N Cowan
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Department of Surgery, Division of Paediatric Surgery, University of Ottawa, Children's Hospital of Eastern Ontario, Ottawa, ON, K1Y 4E9, Canada
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario, Ottawa, ON, K1H 8L1, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- The Eric J. Poulin Centre for Neuromuscular Diseases, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
3
|
The Role of Hypoxia-Inducible Factor Isoforms in Breast Cancer and Perspectives on Their Inhibition in Therapy. Cancers (Basel) 2022; 14:cancers14184518. [PMID: 36139678 PMCID: PMC9496909 DOI: 10.3390/cancers14184518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/04/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary In many types of cancers, the activity of the hypoxia-inducible factors enhances hallmarks such as suppression of the immune response, altered metabolism, angiogenesis, invasion, metastasis, and more. As a result of observing these features, HIFs became attractive targets in designing anticancer therapy. The lack of effective breast treatment based on HIFs inhibitors and the elusive role of those factors in this type of cancer raises the concern wheter targeting hypoxia-inducible factors is the right path. Results of the study on breast cancer cell lines suggest the need to consider aspects like HIF-1α versus HIF-2α isoforms inhibition, double versus singular isoform inhibition, different hormone receptors status, metastases, and perhaps different not yet investigated issues. In other words, targeting hypoxia-inducible factors in breast cancers should be preceded by a better understanding of their role in this type of cancer. The aim of this paper is to review the role, functions, and perspectives on hypoxia-inducible factors inhibition in breast cancer. Abstract Hypoxia is a common feature associated with many types of cancer. The activity of the hypoxia-inducible factors (HIFs), the critical element of response and adaptation to hypoxia, enhances cancer hallmarks such as suppression of the immune response, altered metabolism, angiogenesis, invasion, metastasis, and more. The HIF-1α and HIF-2α isoforms show similar regulation characteristics, although they are active in different types of hypoxia and can show different or even opposite effects. Breast cancers present several unique ways of non-canonical hypoxia-inducible factors activity induction, not limited to the hypoxia itself. This review summarizes different effects of HIFs activation in breast cancer, where areas such as metabolism, evasion of the immune response, cell survival and death, angiogenesis, invasion, metastasis, cancer stem cells, and hormone receptors status have been covered. The differences between HIF-1α and HIF-2α activity and their impacts are given special attention. The paper also discusses perspectives on using hypoxia-inducible factors as targets in anticancer therapy, given current knowledge acquired in molecular studies.
Collapse
|
4
|
Wu W, Su Y, Hu C, Tao H, Jiang Y, Zhu G, Zhu J, Zhai Y, Qu J, Zhou X, Zhao F. Hypoxia-Induced Scleral HIF-2α Upregulation Contributes to Rises in MMP-2 Expression and Myopia Development in Mice. Invest Ophthalmol Vis Sci 2022; 63:2. [PMID: 35802383 PMCID: PMC9279925 DOI: 10.1167/iovs.63.8.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Purpose Scleral hypoxia is a key factor that induces hypoxia-inducible factor-1α (HIF-1α) upregulation, and this response contributes to myopia progression. Currently, we aim to determine if the different HIF subtypes, including HIF-1α and HIF-2α, mediate hypoxia-induced myopia development through promoting scleral MMP-2 expression and collagen degradation. Methods Our study included: (1) time-course of scleral HIF-2α, MMP-2, and COL1α1 expression during form-deprivation myopia (FDM) development was determined in C57BL/6J mice. (2) The effect of silencing either HIF-1Α or HIF-2A on hypoxia-induced alterations in MMP-2 expression was analyzed in cultured human scleral fibroblasts (HSFs) under a hypoxic condition (i.e. 1% oxygen). (3) To knock-down either HIF-1α or HIF-2α expression in the sclera, we performed Sub-Tenon's capsule injection of an adeno-associated virus (AAV)8-packaged Cre overexpression vector (AAV8-Cre) in HIF-1αfl/fl or HIF-2αfl/fl mice. HIF-1α, HIF-2α, MMP-2, and COL1α1 expression were analyzed by Western blot or quantitative real-time PCR (qRT-PCR). In addition, the effects of scleral HIF-2α knock-down on normal refractive development and FDM development were evaluated. Results The time-dependent increases in scleral HIF-2α mimicked the HIF-1α expression profiles as we previously described. Hypoxia significantly promoted MMP-2 expression in HSFs, and this upregulation was solely alleviated by HIF-2A rather than HIF-1A silencing. Scleral HIF-2α knockdown significantly inhibited form-deprivation (FD)-induced MMP-2 upregulation and declines in COL1α1 accumulation and myopia development. Although scleral HIF-1α knockdown also significantly suppressed FD-induced declines in COL1α1 accumulation, it did not abrogate scleral MMP-2 upregulation. Conclusions HIF-2α rather than HIF-1α induces myopia development through upregulating MMP-2 and promoting collagen degradation in the sclera.
Collapse
Affiliation(s)
- Wenjing Wu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Vision Science, Wenzhou, Zhejiang, China
| | - Yongchao Su
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Vision Science, Wenzhou, Zhejiang, China
| | - Changxi Hu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Vision Science, Wenzhou, Zhejiang, China
| | - Huixin Tao
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Vision Science, Wenzhou, Zhejiang, China
| | - Ying Jiang
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Vision Science, Wenzhou, Zhejiang, China
| | - Guandong Zhu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Vision Science, Wenzhou, Zhejiang, China
| | - Jiadi Zhu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Vision Science, Wenzhou, Zhejiang, China
| | - Ying Zhai
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Vision Science, Wenzhou, Zhejiang, China
| | - Jia Qu
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Vision Science, Wenzhou, Zhejiang, China.,National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China.,Oujiang Laboratory, Wenzhou, Zhejiang, China
| | - Xiangtian Zhou
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Vision Science, Wenzhou, Zhejiang, China.,National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China.,Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou, Zhejiang, China.,Oujiang Laboratory, Wenzhou, Zhejiang, China
| | - Fei Zhao
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology, and Vision Science, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
Savyuk M, Krivonosov M, Mishchenko T, Gazaryan I, Ivanchenko M, Khristichenko A, Poloznikov A, Hushpulian D, Nikulin S, Tonevitsky E, Abuzarova G, Mitroshina E, Vedunova M. Neuroprotective Effect of HIF Prolyl Hydroxylase Inhibition in an In Vitro Hypoxia Model. Antioxidants (Basel) 2020; 9:E662. [PMID: 32722310 PMCID: PMC7463909 DOI: 10.3390/antiox9080662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 01/19/2023] Open
Abstract
A novel potent analog of the branched tail oxyquinoline group of hypoxia-inducible factor (HIF) prolyl hydroxylase inhibitors, neuradapt, has been studied in two treatment regimes in an in vitro hypoxia model on murine primary hippocampal cultures. Neuradapt activates the expression of HIF1 and HIF2 target genes and shows no toxicity up to 20 μM, which is more than an order of magnitude higher than its biologically active concentration. Cell viability, functional activity, and network connectivity between the elements of neuronal networks have been studied using a pairwise correlation analysis of the intracellular calcium fluctuations in the individual cells. An immediate treatment with 1 μМ and 15 μМ neuradapt right at the onset of hypoxia not only protects from the death, but also maintains the spontaneous calcium activity in nervous cells at the level of the intact cultures. A similar neuroprotective effect in the post-treatment scenario is observed for 15 μМ, but not for 1 μМ neuradapt. Network connectivity is better preserved with immediate treatment using 1 μМ neuradapt than with 15 μМ, which is still beneficial. Post-treatment with neuradapt did not restore the network connectivity despite the observation that neuradapt significantly increased cell viability at 1 μМ and functional activity at 15 μМ. The preservation of cell viability and functional activity makes neuradapt promising for further studies in a post-treatment scenario, since it can be combined with other drugs and treatments restoring the network connectivity of functionally competent cells.
Collapse
Affiliation(s)
- Maria Savyuk
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (M.S.); (T.M.); (E.M.)
| | - Mikhail Krivonosov
- Department of Applied Mathematics, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (M.K.); (M.I.)
| | - Tatiana Mishchenko
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (M.S.); (T.M.); (E.M.)
| | - Irina Gazaryan
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow 125284, Russia; (I.G.); (A.K.); or (A.P.); (D.H.); (G.A.)
- Chemical Enzymology Department, Chemistry Faculty, M. V. Lomonosov Moscow State University, Moscow 119992, Russia
| | - Mikhail Ivanchenko
- Department of Applied Mathematics, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (M.K.); (M.I.)
| | - Anna Khristichenko
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow 125284, Russia; (I.G.); (A.K.); or (A.P.); (D.H.); (G.A.)
| | - Andrey Poloznikov
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow 125284, Russia; (I.G.); (A.K.); or (A.P.); (D.H.); (G.A.)
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow 101000, Russia;
| | - Dmitry Hushpulian
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow 125284, Russia; (I.G.); (A.K.); or (A.P.); (D.H.); (G.A.)
- School of Biomedicine, Far Eastern Federal University, Vladivostok 690091, Russia
| | - Sergey Nikulin
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow 101000, Russia;
| | - Evgeny Tonevitsky
- Development Fund of the Innovation Science and Technology Center “Mendeleev Valley”, Moscow 125480, Russia;
| | - Guzal Abuzarova
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow 125284, Russia; (I.G.); (A.K.); or (A.P.); (D.H.); (G.A.)
| | - Elena Mitroshina
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (M.S.); (T.M.); (E.M.)
| | - Maria Vedunova
- Department of Neurotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (M.S.); (T.M.); (E.M.)
| |
Collapse
|
6
|
Gao C, Zhou Y, Li H, Cong X, Jiang Z, Wang X, Cao R, Tian W. Antitumor effects of baicalin on ovarian cancer cells through induction of cell apoptosis and inhibition of cell migration in vitro. Mol Med Rep 2017; 16:8729-8734. [PMID: 29039573 PMCID: PMC5779949 DOI: 10.3892/mmr.2017.7757] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/14/2017] [Indexed: 12/15/2022] Open
Abstract
Baicalin, an active flavone isolated from Scutellaria baicalensis Georgi, has been demonstrated to induce various beneficial biochemical effects such as anti‑inflammatory, anti‑viral, and antitumor effects. However, the antitumor mechanism of baicalin is not well understood. In the present study, baicalin was demonstrated to inhibit the viability and migration of a widely used ovarian cancer cell line, A2780, in a dose‑dependent manner. MTT assays revealed that cell viability significantly decreased in ovarian cancer cells treated with baicalin compared with untreated cells, without effect on normal ovarian cells. Flow cytometric analysis indicated that baicalin suppressed cell proliferation by inducing apoptosis. The underlying mechanisms involved were indicated to be downregulation of the anti‑apoptotic protein B‑cell lymphoma 2 apoptosis regulator and activation of caspase‑3 and ‑9. In addition, wound healing and transwell assays revealed that cell migratory potential and expression of matrix metallopeptidase (MMP)‑2 and MMP‑9 were significantly inhibited when cells were exposed to baicalin, compared with untreated cells. The present study therefore suggested that baicalin has the potential to be used in novel anti‑cancer therapeutic formulations for treatment of ovarian cancer.
Collapse
Affiliation(s)
- Chen Gao
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| | - Yinglu Zhou
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| | - Huatao Li
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| | - Xia Cong
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| | - Zhongling Jiang
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| | - Xin Wang
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| | - Rongfeng Cao
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| | - Wenru Tian
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, P.R. China
| |
Collapse
|
7
|
Inhibition of pro-/active MMP-2 by green tea catechins and prediction of their interaction by molecular docking studies. Mol Cell Biochem 2016; 427:111-122. [PMID: 28013477 DOI: 10.1007/s11010-016-2903-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/03/2016] [Indexed: 01/18/2023]
Abstract
Matrix metalloproteinases (MMPs) play a crucial role in developing different types of lung diseases, e.g., pulmonary arterial hypertension (PAH). Green tea polyphenolic catechins such as EGCG and ECG have been shown to ameliorate various types of diseases including PAH. Our present study revealed that among the four green tea catechins (EGCG, ECG, EC, and EGC), EGCG and ECG inhibit pro-/active MMP-2 activities in pulmonary artery smooth muscle cell (PASMC) culture supernatant. Based on the above, we investigated the interactions of pro-/active MMP-2 with the green tea catechins by computational methods. In silico analysis revealed a strong interaction of pro-/active MMP-2 with EGCG/ECG, and galloyl group has been observed to be responsible for this interaction. The in silico analysis corroborated our experimental observation that EGCG and ECG are active in preventing both the proMMP-2 and MMP-2 activities. Importantly, these two catechins appeared to be better inhibitors for proMMP-2 in comparison to MMP-2 as revealed by gelatin zymogram and also by molecular docking studies. In many type of cells, activation of proMMP-2 occurs via an increase in the level of MT1-MMP (MMP-14). We, therefore, determined the interactions of MT1-MMP with the green tea catechins by molecular docking analysis. The study revealed a strong interaction of MT1-MMP with EGCG/ECG, and galloyl group has been observed to be responsible for the interaction.
Collapse
|