2
|
Tumor suppressor gene DLC1: Its modifications, interactive molecules, and potential prospects for clinical cancer application. Int J Biol Macromol 2021; 182:264-275. [PMID: 33836193 DOI: 10.1016/j.ijbiomac.2021.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022]
Abstract
Deleted in liver cancer 1 (DLC1) is a recognized tumor suppressor gene that negatively regulates Rho family proteins by hydrolyzing the active GTP-bound state to its inactive GDP-bound state. Active Rho proteins play a positive role in tumorigenesis. Numerous in vitro and in vivo experiments have shown that DLC1 is downregulated or inactivated in various solid tumors, which may be due to the following five reasons: genomic deletion, epigenetic modification and ubiquitin-dependent proteasomal degradation may cause DLC1 underexpression; phosphorylation at the post-translation level may cause DLC1 inactivation; and failure to localize at focal adhesions (FAs) may prevent DLC1 from exerting full activity. All of the causes could be attributed to molecular binding. Experimental evidence suggests that direct or indirect targeting of DLC1 is feasible for cancer treatment. Therefore, elucidating the interaction of DLC1 with its binding partners might provide novel targeted therapies for cancer. In this review, we summarized the binding partners of DLC1 at both the gene and protein levels and expounded a variety of anticancer drugs targeting DLC1 to provide information about DLC1 as a cancer diagnostic indicator or therapeutic target.
Collapse
|
4
|
Do H, Kim D, Kang J, Son B, Seo D, Youn H, Youn B, Kim W. TFAP2C increases cell proliferation by downregulating GADD45B and PMAIP1 in non-small cell lung cancer cells. Biol Res 2019; 52:35. [PMID: 31296259 PMCID: PMC6625030 DOI: 10.1186/s40659-019-0244-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/05/2019] [Indexed: 12/25/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is one of the leading causes of death in the world. NSCLC diagnosed at an early stage can be highly curable with a positive prognosis, but biomarker limitations make it difficult to diagnose lung cancer at an early stage. To identify biomarkers for lung cancer development, we previously focused on the oncogenic roles of transcription factor TFAP2C in lung cancers and revealed the molecular mechanism of several oncogenes in lung tumorigenesis based on TFAP2C-related microarray analysis. Results In this study, we analyzed microarray data to identify tumor suppressor genes and nine genes downregulated by TFAP2C were screened. Among the nine genes, we focused on growth arrest and DNA-damage-inducible beta (GADD45B) and phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1) as representative TFAP2C-regulated tumor suppressor genes. It was observed that overexpressed TFAP2C resulted in inhibition of GADD45B and PMAIP1 expressions at both the mRNA and protein levels in NSCLC cells. In addition, downregulation of GADD45B and PMAIP1 by TFAP2C promoted cell proliferation and cell motility, which are closely associated with NSCLC tumorigenesis. Conclusion This study indicates that GADD45B and PMAIP1 could be promising tumor suppressors for NSCLC and might be useful as prognostic markers for use in NSCLC therapy. Electronic supplementary material The online version of this article (10.1186/s40659-019-0244-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hyunhee Do
- Department of Science Education, Korea National University of Education, Cheongju-si, Chungbuk, 28173, Republic of Korea
| | - Dain Kim
- Department of Science Education, Korea National University of Education, Cheongju-si, Chungbuk, 28173, Republic of Korea
| | - JiHoon Kang
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Beomseok Son
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Danbi Seo
- Department of Science Education, Korea National University of Education, Cheongju-si, Chungbuk, 28173, Republic of Korea
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea. .,Department of Biological Sciences, Pusan National University, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea.
| | - Wanyeon Kim
- Department of Science Education, Korea National University of Education, Cheongju-si, Chungbuk, 28173, Republic of Korea. .,Department of Biology Education, Korea National University of Education, 250 Taeseongtabyeon-ro, Gangnae-myeon, Heungdeok-gu, Cheongju-si, Chungbuk, 28173, Republic of Korea.
| |
Collapse
|
5
|
Cho H, Um J, Lee JH, Kim WH, Kang WS, Kim SH, Ha HH, Kim YC, Ahn YK, Jung DW, Williams DR. ENOblock, a unique small molecule inhibitor of the non-glycolytic functions of enolase, alleviates the symptoms of type 2 diabetes. Sci Rep 2017; 7:44186. [PMID: 28272459 PMCID: PMC5341156 DOI: 10.1038/srep44186] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/06/2017] [Indexed: 01/05/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) significantly impacts on human health and patient numbers are predicted to rise. Discovering novel drugs and targets for treating T2DM is a research priority. In this study, we investigated targeting of the glycolysis enzyme, enolase, using the small molecule ENOblock, which binds enolase and modulates its non-glycolytic ‘moonlighting’ functions. In insulin-responsive cells ENOblock induced enolase nuclear translocation, where this enzyme acts as a transcriptional repressor. In a mammalian model of T2DM, ENOblock treatment reduced hyperglycemia and hyperlipidemia. Liver and kidney tissue of ENOblock-treated mice showed down-regulation of known enolase target genes and reduced enolase enzyme activity. Indicators of secondary diabetic complications, such as tissue apoptosis, inflammatory markers and fibrosis were inhibited by ENOblock treatment. Compared to the well-characterized anti-diabetes drug, rosiglitazone, ENOblock produced greater beneficial effects on lipid homeostasis, fibrosis, inflammatory markers, nephrotoxicity and cardiac hypertrophy. ENOblock treatment was associated with the down-regulation of phosphoenolpyruvate carboxykinase and sterol regulatory element-binding protein-1, which are known to produce anti-diabetic effects. In summary, these findings indicate that ENOblock has potential for therapeutic development to treat T2DM. Previously considered as a ‘boring’ housekeeping gene, these results also implicate enolase as a novel drug target for T2DM.
Collapse
Affiliation(s)
- Haaglim Cho
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - JungIn Um
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Ji-Hyung Lee
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Woong-Hee Kim
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Wan Seok Kang
- Cell Regeneration Research Center, Department of Cardiology, Cardiovascular Center, Chonnam National University Hospital, 671 Jebong-ro, Dong-gu, Gwangju, 501-757, Korea
| | - So Hun Kim
- Division of Endocrinology and Metabolism, Inha University School of Medicine, 400-711, Republic of Korea
| | - Hyung-Ho Ha
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, 540950, Republic of Korea
| | - Yong-Chul Kim
- Drug Discovery Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Young-Keun Ahn
- Cell Regeneration Research Center, Department of Cardiology, Cardiovascular Center, Chonnam National University Hospital, 671 Jebong-ro, Dong-gu, Gwangju, 501-757, Korea
| | - Da-Woon Jung
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Darren R Williams
- New Drug Targets Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju, 61005, Republic of Korea
| |
Collapse
|