1
|
Li J, Zhong J, Tang A, Yin J, Li S. PRAMEF12, a novel cancer/testis gene, regulates proliferation and apoptosis to promote progression of glioma. Biomark Med 2024; 18:385-397. [PMID: 38913622 PMCID: PMC11285353 DOI: 10.2217/bmm-2023-0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 11/17/2023] [Indexed: 06/26/2024] Open
Abstract
Aim: To evaluate whether PRAMEF12 can serve as a diagnostic biomarker for glioma. Methods: We examined PRAMEF12 expression in multiple normal and glioma tissues. The diagnostic value of PRAMEF12 was evaluated using receiver operating characteristic curve analysis. The effect of PRAMEF12 ablation on proliferation, cell cycle and apoptosis was investigated. Database analyses were utilized for functional enrichment analysis. Results: PRAMEF12 expression in normal tissue was restricted to the human testis. PRAMEF12 displayed significant diagnostic value in glioma. PRAMEF12 knockdown inhibited cell proliferation, induced apoptosis and resulted in induction of S-phase cell cycle arrest. Pathway enrichment analysis indicated that PRAMEF12 may participate in cancer. Conclusion: PRAMEF12, a novel cancer/testis gene, may be a potential new diagnostic biomarker for glioma.
Collapse
Affiliation(s)
- Jiaqiang Li
- Department of Pediatric Urology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, 518026, China
| | - Jianhua Zhong
- Department of Science & Education, The Second People’s Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
| | - Aifa Tang
- Department of Science & Education, The Second People’s Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
| | - Jianchun Yin
- Department of Pediatric Urology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, 518026, China
| | - Shoulin Li
- Department of Pediatric Urology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, 518026, China
| |
Collapse
|
2
|
Aisha J, Yenugu S. Characterization of SPINK2, SPACA7 and PDCL2: Effect of immunization on fecundity, sperm function and testicular transcriptome. Reprod Biol 2023; 23:100711. [PMID: 36462395 DOI: 10.1016/j.repbio.2022.100711] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 12/05/2022]
Abstract
Testicular factors play a vital role in spermatogenesis. We characterized the functional role of rat Spink2, Spaca7 and Pdcl2 genes. Their primary, secondary and tertiary structure were deduced in silico. The genes of rat Spink2, Spaca7 and Pdcl2 mRNA were predominantly expressed in the testis. SPINK2, SPACA7 and PDCL2 protein expression was evident in all the cell types of testis and on spermatozoa. Ablation of each of these proteins by active immunization resulted in reduced fecundity and sperm count. Damage to the anatomical architecture of testis and epididymis was evident. In SPINK2 immunized rats, 283 genes were differentially regulated while it was 434 and 872 genes for SPACA7 and PDCL2 respectively. Genes that were differentially regulated in the testis of SPINK2 immunized rats primarily belonged to extracellular exosome formation, extracellular space and response to drugs. SPACA7 ablation affected genes related to extracellular space, oxidation-reduction processes, endoplasmic reticulum membrane and response to drugs. Differential gene expression was observed for nuclear function, protein binding and positive regulation of transcription from RNA polymerase II promoter in testis of PDCL2 immunized rats. Results of our study demonstrate the role of SPINK2, SPACA7 and PDCL2 in spermatogenesis and in important molecular processes that may dictate testicular function and other physiological responses as well.
Collapse
Affiliation(s)
- Jamil Aisha
- Department of Animal Biology, University of Hyderabad, Hyderabad 500046, India
| | - Suresh Yenugu
- Department of Animal Biology, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
3
|
X chromosome-linked genes in the mature sperm influence semen quality and fertility of breeding bulls. Gene 2022; 839:146727. [PMID: 35835407 DOI: 10.1016/j.gene.2022.146727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/21/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022]
Abstract
The role of sperm expressed X-linked genes on bull fertility has not been studied in detail. The objective of the present study was to assess the influence of X-linked genes on the sperm functional parameters and field fertility rate in the Holstein Friesian cattle (n = 12) and Murrah buffalo (n = 7) bulls. The enrichment analysis (cattle = 8; buffalo = 8) of the X-linked genes was carried out using retrospective RNA-seq data and mRNA expression levels of functionally relevant genes were validated using the RT-qPCR. The mRNA expression levels of these genes were functionally associated with sperm attributes and field fertility rate. The sperm transcriptome studies revealed that the total number of expressed genes and the transcript content of the X-linked genes in the mature sperm were very low in both species, and only 23.31% of these genes were commonly expressed between them. The transcript pool corresponding to the X-linked genes represents embryonic organ development (p = 0.03) and reproduction (p = 0.02) processes in cattle and buffalo sperm, respectively. The mRNA expression levels of X-linked genes, RPL10 and ZCCHC13 in cattle; AKAP4, TSPAN6, RPL10 and RPS4X in buffalo were significantly (p < 0.05) correlated with sperm kinematics. Importantly, the mRNA expression levels of the genes RPL10 (r = -0.68) and RPS4X (r = 0.81) had a significant correlation with the field fertility rate in cattle and buffalo, respectively. Multivariate regression models and receiver operating curve analysis suggest that the mRNA expression levels of X-linked genes may be useful in predicting bull fertility. The study indicates that sperm-expressed X-linked genes influence semen quality and field fertility rate in both cattle and buffalo.
Collapse
|
4
|
Singh PK, Bhatt MLB, Singh P, Rath SK, Dalela D, Goel MM. Frequent expression of a novel cancer testis antigen, protein kinase human monopolar spindle 1 (hMps1/TTK) in human urinary bladder transitional cell carcinoma. Drug Discov Ther 2021; 15:204-209. [PMID: 34456216 DOI: 10.5582/ddt.2021.01010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Urothelial bladder cancer (UBC) is a frequently occurring malignancy of the urinary tract. The present study was undertaken to evaluate the mRNA and immunohistochemical (IHC) expression of protein kinase human monopolar spindle 1 (hMps1/TTK) gene in transitional cell carcinoma (TCC) of the bladder and correlate its expression with the clinicopathological characteristics of patients. In the present study, quantitative real-time reverse-transcriptase polymerase chain reaction (qRT-PCR) was used to evaluate TTK mRNA expression in TCC. IHC analysis of TTK was also evaluated. Independent Student's t, ANOVA and chi-square (χ2) tests were used to analyze the data statistically. The frequency of TTK mRNA over expression was detected in 50% of UBC (38/76) by qRT-PCR. Relative mean fold expression of TTK mRNA was found significantly (p < 0.05) higher in muscle-invasive bladder cancer (MIBC) as compared to non-muscle-invasive bladder cancer (NMIBC) patients (8.96 ± 4.51 vs. 5.64 ± 3.53, p = 0.03). Moreover, IHC reveals heterogenous immunostaining pattern of TTK in TCC tissues. The frequency of TTK protein over expression was detected in 56.9% (37 of 65) UBC patients. No significant IHC expression of TTK was detected among adjacent noncancerous tissues (ANCTs) and benign prostatic hyperplasia (BPH) used as control. Collectively our study observations conclude that TTK is a novel cancer/testis antigen (CTA) as a diagnostic marker for early diagnosis of UBC.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Department of Biochemistry, All India Institute of Medical Sciences Bibinagar, Telangana, India.,Department of Radiotherapy, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Madan Lal Brahma Bhatt
- Department of Radiotherapy, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Prabhat Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Berhampur, Odisha, India
| | - Srikanta Kumar Rath
- Genotoxicity Laboratory, Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Diwakar Dalela
- Department of Urology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Madhu Mati Goel
- Department of Pathology, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
5
|
Amjad E, Sokouti B, Asnaashari S. A hybrid systems biology and systems pharmacology investigation of Zingerone's effects on reconstructed human epidermal tissues. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021; 22:90. [PMID: 36820091 PMCID: PMC8666180 DOI: 10.1186/s43042-021-00204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/31/2021] [Indexed: 11/14/2022] Open
Abstract
Background As individuals live longer, elderly populations can be expected to face issues. This pattern urges researchers to investigate the aging concept further to produce successful anti-aging agents. In the current study, the effects of Zingerone (a natural compound) on epidermal tissues were analyzed using a bioinformatics approach. Methods For this purpose, we chose the GEO dataset GSE133338 to carry out the systems biology and systems pharmacology approaches, ranging from identifying the differentially expressed genes to analyzing the gene ontology, determining similar structures of Zingerone and their features (i.e., anti-oxidant, anti-inflammatory, and skin disorders), constructing the gene-chemicals network, analyzing gene-disease relationships, and validating significant genes through the evidence presented in the literature. Results The post-processing of the microarray dataset identified thirteen essential genes among control and Zingerone-treated samples. The procedure revealed various structurally similar chemical and herbal compounds with possible skin-related effects. Additionally, we studied the relationships of differentially expressed genes with skin-related diseases and validated their direct connections with skin disorders the evidence available in the literature. Also, the analysis of the microarray profiling dataset revealed the critical role of interleukins as a part of the cytokines family on skin aging progress. Conclusions Zingerone, and potentially any constituents of Zingerone (e.g., their similar compound scan functionality), can be used as therapeutic agents in managing skin disorders such as skin aging. However, the beneficial effects of Zingerone should be assessed in other models (i.e., human or animal) in future studies.
Collapse
Affiliation(s)
- Elham Amjad
- grid.412888.f0000 0001 2174 8913Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Babak Sokouti
- grid.412888.f0000 0001 2174 8913Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Asnaashari
- grid.412888.f0000 0001 2174 8913Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Yang M, Song B, Liu J, Bing Z, Wang Y, Yu L. Gene signature for prognosis in comparison of pancreatic cancer patients with diabetes and non-diabetes. PeerJ 2020; 8:e10297. [PMID: 33240632 PMCID: PMC7666560 DOI: 10.7717/peerj.10297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/13/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Pancreatic cancer (PC) has much weaker prognosis, which can be divided into diabetes and non-diabetes. PC patients with diabetes mellitus will have more opportunities for physical examination due to diabetes, while pancreatic cancer patients without diabetes tend to have higher risk. Identification of prognostic markers for diabetic and non-diabetic pancreatic cancer can improve the prognosis of patients with both types of pancreatic cancer. METHODS Both types of PC patients perform differently at the clinical and molecular levels. The Cancer Genome Atlas (TCGA) is employed in this study. The gene expression of the PC with diabetes and non-diabetes is used for predicting their prognosis by LASSO (Least Absolute Shrinkage and Selection Operator) Cox regression. Furthermore, the results are validated by exchanging gene biomarker with each other and verified by the independent Gene Expression Omnibus (GEO) and the International Cancer Genome Consortium (ICGC). The prognostic index (PI) is generated by a combination of genetic biomarkers that are used to rank the patient's risk ratio. Survival analysis is applied to test significant difference between high-risk group and low-risk group. RESULTS An integrated gene prognostic biomarker consisted by 14 low-risk genes and six high-risk genes in PC with non-diabetes. Meanwhile, and another integrated gene prognostic biomarker consisted by five low-risk genes and three high-risk genes in PC with diabetes. Therefore, the prognostic value of gene biomarker in PC with non-diabetes and diabetes are all greater than clinical traits (HR = 1.102, P-value < 0.0001; HR = 1.212, P-value < 0.0001). Gene signature in PC with non-diabetes was validated in two independent datasets. CONCLUSIONS The conclusion of this study indicated that the prognostic value of genetic biomarkers in PCs with non-diabetes and diabetes. The gene signature was validated in two independent databases. Therefore, this study is expected to provide a novel gene biomarker for predicting prognosis of PC with non-diabetes and diabetes and improving clinical decision.
Collapse
Affiliation(s)
- Mingjun Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China
| | - Boni Song
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China
- Institute of Modern Physics of Chinese Academy of Sciences, Lanzhou, China
| | - Juxiang Liu
- Gansu Key Laboratory of Endocrine and metabolism, Department of Endocrinology, Gansu Provincial People’s Hospital, Lanzhou, Gansu, China
| | - Zhitong Bing
- Institute of Modern Physics of Chinese Academy of Sciences, Lanzhou, China
- Evidence Based Medicine Center, School of Basic Medical Science of Lanzhou University,, Lanzhou, China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China
| | - Linmiao Yu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, China
| |
Collapse
|
7
|
颜 秋, 马 义, 陈 润, 周 秀, 乔 静, 冼 英, 冯 玲, 陈 彩. [Expression of DKKL1 in spermatozoa of men with asthenospermia]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:324-328. [PMID: 29643039 PMCID: PMC6744168 DOI: 10.3969/j.issn.1673-4254.2018.03.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To compare the expression of DKKL1 in ejaculated spermatozoa of normal fertile men and men with asthenospermia and investigate the role of DKKL1 in the pathogenesis of asthenospermia. METHODS The characteristics of semen samples collected from normal fertile men and men with asthenospermia were analyzed using computer-assisted sperm analysis according to WHO criteria. The ejaculated sperms were isolated by Percoll discontinuous density gradients to detect the expression of DKKL1 mRNA and protein using real-time PCR and Western blotting. RESULTS The expression of DKKL1 mRNA was significantly down-regulated by 11.1 times in asthenospermic men as compared with that in normal fertile men (P<0.01). Western blotting showed that the expression of DKKL1 protein was down-regulated by 2.4 times in asthenospermic men compared to normal fertile men. CONCLUSION The expression of DKKL1, which may play an important role in sperm motility,is significantly decreased in ejaculated spermatozoa of men with asthenospermia.
Collapse
Affiliation(s)
- 秋霞 颜
- 广州医科大学附属第六医院//清远市人民医院生殖医学中心,广东 清远 511518Center for Reproductive Medicine, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
- 暨南大学细胞生物学系//暨南大学生物医药研究院,广东 广州 510632Department of Cellular Biology, Institute of Biological Medicine, Jinan University, Guangzhou 510632, China
| | - 义 马
- 暨南大学细胞生物学系//暨南大学生物医药研究院,广东 广州 510632Department of Cellular Biology, Institute of Biological Medicine, Jinan University, Guangzhou 510632, China
| | - 润强 陈
- 广州医科大学附属第六医院//清远市人民医院生殖医学中心,广东 清远 511518Center for Reproductive Medicine, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - 秀琴 周
- 广州医科大学附属第六医院//清远市人民医院生殖医学中心,广东 清远 511518Center for Reproductive Medicine, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - 静 乔
- 广州医科大学附属第六医院//清远市人民医院生殖医学中心,广东 清远 511518Center for Reproductive Medicine, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - 英杰 冼
- 广州医科大学附属第六医院//清远市人民医院生殖医学中心,广东 清远 511518Center for Reproductive Medicine, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - 玲 冯
- 广州医科大学附属第六医院//清远市人民医院生殖医学中心,广东 清远 511518Center for Reproductive Medicine, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - 彩蓉 陈
- 广州医科大学附属第六医院//清远市人民医院生殖医学中心,广东 清远 511518Center for Reproductive Medicine, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| |
Collapse
|
8
|
颜 秋, 马 义, 陈 润, 周 秀, 乔 静, 冼 英, 冯 玲, 陈 彩. [Expression of DKKL1 in spermatozoa of men with asthenospermia]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:324-328. [PMID: 29643039 PMCID: PMC6744168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Indexed: 07/30/2024]
Abstract
OBJECTIVE To compare the expression of DKKL1 in ejaculated spermatozoa of normal fertile men and men with asthenospermia and investigate the role of DKKL1 in the pathogenesis of asthenospermia. METHODS The characteristics of semen samples collected from normal fertile men and men with asthenospermia were analyzed using computer-assisted sperm analysis according to WHO criteria. The ejaculated sperms were isolated by Percoll discontinuous density gradients to detect the expression of DKKL1 mRNA and protein using real-time PCR and Western blotting. RESULTS The expression of DKKL1 mRNA was significantly down-regulated by 11.1 times in asthenospermic men as compared with that in normal fertile men (P<0.01). Western blotting showed that the expression of DKKL1 protein was down-regulated by 2.4 times in asthenospermic men compared to normal fertile men. CONCLUSION The expression of DKKL1, which may play an important role in sperm motility,is significantly decreased in ejaculated spermatozoa of men with asthenospermia.
Collapse
Affiliation(s)
- 秋霞 颜
- 广州医科大学附属第六医院//清远市人民医院生殖医学中心,广东 清远 511518Center for Reproductive Medicine, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
- 暨南大学细胞生物学系//暨南大学生物医药研究院,广东 广州 510632Department of Cellular Biology, Institute of Biological Medicine, Jinan University, Guangzhou 510632, China
| | - 义 马
- 暨南大学细胞生物学系//暨南大学生物医药研究院,广东 广州 510632Department of Cellular Biology, Institute of Biological Medicine, Jinan University, Guangzhou 510632, China
| | - 润强 陈
- 广州医科大学附属第六医院//清远市人民医院生殖医学中心,广东 清远 511518Center for Reproductive Medicine, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - 秀琴 周
- 广州医科大学附属第六医院//清远市人民医院生殖医学中心,广东 清远 511518Center for Reproductive Medicine, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - 静 乔
- 广州医科大学附属第六医院//清远市人民医院生殖医学中心,广东 清远 511518Center for Reproductive Medicine, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - 英杰 冼
- 广州医科大学附属第六医院//清远市人民医院生殖医学中心,广东 清远 511518Center for Reproductive Medicine, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - 玲 冯
- 广州医科大学附属第六医院//清远市人民医院生殖医学中心,广东 清远 511518Center for Reproductive Medicine, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| | - 彩蓉 陈
- 广州医科大学附属第六医院//清远市人民医院生殖医学中心,广东 清远 511518Center for Reproductive Medicine, Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, China
| |
Collapse
|
9
|
Bonadio RS, Arcanjo AC, Lima EC, Vasconcelos AT, Silva RC, Horst FH, Azevedo RB, Poças-Fonseca MJ, F Longo JP. DNA methylation alterations induced by transient exposure of MCF-7 cells to maghemite nanoparticles. Nanomedicine (Lond) 2017; 12:2637-2649. [PMID: 29111877 DOI: 10.2217/nnm-2017-0241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIM To evaluate the DNA methylation profile of MCF-7 cells during and after the treatment with maghemite nanoparticles (MNP-CIT). MATERIALS & METHODS Noncytotoxic MNP-CIT concentrations and cell morphology were evaluated by standard methods. DNA methylation was assessed by whole genome bisulfite sequencing. DNA methyltransferase (DNMT) genes expression was analyzed by qRT-PCR. RESULTS A total of 30 and 60 µgFeml-1 MNP-CIT accumulated in cytoplasm but did not present cytotoxic effects. The overall percentage of DNA methylation was not affected, but 58 gene-associated regions underwent DNA methylation reprogramming, including genes related to cancer onset. DNMT transcript levels were also modulated. CONCLUSION Transient exposure to MNP-CIT promoted epigenomic changes and altered the DNMT genes regulation in MCF-7 cells. These events should be considered for biomedical applications.
Collapse
Affiliation(s)
- Raphael S Bonadio
- Genetics & Morphology Department, University of Brasilia, Brasília, Brazil
| | | | | | | | - Renata C Silva
- National Institute of Metrology, Quality & Technology, Xerém, Duque de Caxias, Rio de Janeiro, Brazil
| | - Frederico H Horst
- Genetics & Morphology Department, University of Brasilia, Brasília, Brazil
| | - Ricardo B Azevedo
- Genetics & Morphology Department, University of Brasilia, Brasília, Brazil
| | | | - João Paulo F Longo
- Genetics & Morphology Department, University of Brasilia, Brasília, Brazil
| |
Collapse
|