1
|
Madasu C, Liao Z, Parks SE, Sharma KL, Bohren KM, Ye Q, Li F, Palaniappan M, Tan Z, Yuan F, Creighton CJ, Tang S, Masand RP, Guan X, Young DW, Monsivais D, Matzuk MM. Identification of potent pan-ephrin receptor kinase inhibitors using DNA-encoded chemistry technology. Proc Natl Acad Sci U S A 2024; 121:e2322934121. [PMID: 38701119 PMCID: PMC11087803 DOI: 10.1073/pnas.2322934121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/22/2024] [Indexed: 05/05/2024] Open
Abstract
EPH receptors (EPHs), the largest family of tyrosine kinases, phosphorylate downstream substrates upon binding of ephrin cell surface-associated ligands. In a large cohort of endometriotic lesions from individuals with endometriosis, we found that EPHA2 and EPHA4 expressions are increased in endometriotic lesions relative to normal eutopic endometrium. Because signaling through EPHs is associated with increased cell migration and invasion, we hypothesized that chemical inhibition of EPHA2/4 could have therapeutic value. We screened DNA-encoded chemical libraries (DECL) to rapidly identify EPHA2/4 kinase inhibitors. Hit compound, CDD-2693, exhibited picomolar/nanomolar kinase activity against EPHA2 (Ki: 4.0 nM) and EPHA4 (Ki: 0.81 nM). Kinome profiling revealed that CDD-2693 bound to most EPH family and SRC family kinases. Using NanoBRET target engagement assays, CDD-2693 had nanomolar activity versus EPHA2 (IC50: 461 nM) and EPHA4 (IC50: 40 nM) but was a micromolar inhibitor of SRC, YES, and FGR. Chemical optimization produced CDD-3167, having picomolar biochemical activity toward EPHA2 (Ki: 0.13 nM) and EPHA4 (Ki: 0.38 nM) with excellent cell-based potency EPHA2 (IC50: 8.0 nM) and EPHA4 (IC50: 2.3 nM). Moreover, CDD-3167 maintained superior off-target cellular selectivity. In 12Z endometriotic epithelial cells, CDD-2693 and CDD-3167 significantly decreased EFNA5 (ligand) induced phosphorylation of EPHA2/4, decreased 12Z cell viability, and decreased IL-1β-mediated expression of prostaglandin synthase 2 (PTGS2). CDD-2693 and CDD-3167 decreased expansion of primary endometrial epithelial organoids from patients with endometriosis and decreased Ewing's sarcoma viability. Thus, using DECL, we identified potent pan-EPH inhibitors that show specificity and activity in cellular models of endometriosis and cancer.
Collapse
Affiliation(s)
- Chandrashekhar Madasu
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
| | - Zian Liao
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
| | - Sydney E. Parks
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
| | - Kiran L. Sharma
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
| | - Kurt M. Bohren
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
| | - Qiuji Ye
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
| | - Feng Li
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| | - Murugesan Palaniappan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
| | - Zhi Tan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| | - Fei Yuan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
| | - Chad J. Creighton
- Dan L. Duncan Comprehensive Cancer Center Division of Biostatistics, Baylor College of Medicine, Houston, TX77030
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX77030
- Department of Medicine, Baylor College of Medicine, Houston, TX77030
| | - Suni Tang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
| | - Ramya P. Masand
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX77030
| | - Xiaoming Guan
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX77030
| | - Damian W. Young
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| | - Diana Monsivais
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
| | - Martin M. Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX77030
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX77030
| |
Collapse
|
2
|
The EPH/Ephrin System in Gynecological Cancers: Focusing on the Roots of Carcinogenesis for Better Patient Management. Int J Mol Sci 2022; 23:ijms23063249. [PMID: 35328669 PMCID: PMC8949008 DOI: 10.3390/ijms23063249] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Gynecological cancers represent some of the most common types of malignancy worldwide. Erythropoietin-producing hepatocellular receptors (EPHs) comprise the largest subfamily of receptor tyrosine kinases, binding membrane-bound proteins called ephrins. EPHs/ephrins exhibit widespread expression in different cell types, playing an important role in carcinogenesis. The aim of the current review was to examine the dysregulation of the EPH/ephrin system in gynecological cancer, clarifying its role in ovarian, endometrial, and cervical carcinogenesis. In order to identify relevant studies, a literature review was conducted using the MEDLINE and LIVIVO databases. The search terms ephrin, ephrin receptor, ovarian cancer, endometrial cancer, and cervical cancer were employed and we were able to identify 57 studies focused on gynecological cancer and published between 2001 and 2021. All researched ephrins seemed to be upregulated in gynecological cancer, whereas EPHs showed either significant overexpression or extensive loss of expression in gynecological tumors, depending on the particular receptor. EPHA2, the most extensively studied EPH in ovarian cancer, exhibited overexpression both in ovarian carcinoma cell lines and patient tissue samples, while EPHB4 was found to be upregulated in endometrial cancer in a series of studies. EPHs/ephrins were shown to exert their role in different stages of gynecological cancer and to influence various clinicopathological parameters. The analysis of patients’ gynecological cancer tissue samples, most importantly, revealed the significant role of the EPH/ephrin system in the development and progression of gynecological cancer, as well as overall patient survival. In conclusion, the EPH/ephrin system represents a large family of biomolecules with promising applications in the fields of diagnosis, prognosis, disease monitoring, and treatment of gynecological cancer, with an established important clinical impact.
Collapse
|
3
|
The Clinical Impact of the EPH/Ephrin System in Cancer: Unwinding the Thread. Int J Mol Sci 2021; 22:ijms22168412. [PMID: 34445116 PMCID: PMC8395090 DOI: 10.3390/ijms22168412] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Erythropoietin-producing human hepatocellular receptors (EPHs) compose the largest known subfamily of receptor tyrosine kinases (RTKs). They bind and interact with the EPH family receptor interacting proteins (ephrins). EPHs/ephrins are implicated in a variety of physiological processes, as well as in cancer pathogenesis. With neoplastic disease remaining a leading cause of death world-wide, the development of novel biomarkers aiding in the field of diagnosis, prognosis, and disease monitoring is of utmost importance. A multitude of studies have proven the association between the expression of members of the EPH/ephrin system and various clinicopathological parameters, including disease stage, tumor histologic grade, and patients' overall survival. Besides their utilization in timely disease detection and assessment of outcome, EPHs/ephrins could also represent possible novel therapeutic targets. The aim of the current review of the literature was to present the existing data regarding the association between EPH/ephrin system expression and the clinical characteristics of malignant tumors.
Collapse
|
4
|
Oh ST, Yang KJ, Bae JM, Park HJ, Yoo DS, Park YM. The differential expression of EPHB4 and ephrin B2 in cutaneous squamous cell carcinoma according to the grade of tumor differentiation: a clinicopathological study. Int J Dermatol 2021; 60:736-741. [PMID: 33598934 DOI: 10.1111/ijd.15445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND EPHB4 and its ligand, ephrin B2, which are receptor tyrosine kinases of the erythropoietin-producing hepatocellular (EPH) family, are known to be linked to several human cancers. The aim of this study was to investigate their expression patterns in cutaneous squamous cell carcinoma (CSCC) in association with tumor differentiation and other variable clinical characteristics. MATERIALS AND METHODS Immunohistochemical staining for EPHB4 and ephrin B2 was performed in 32 cases of CSCC with different histologic grades. The clinical characteristics and histologic grades of CSCC were evaluated in association with EPHB4 and ephrin B2 expression patterns. RESULTS EPHB4 and ephrin B2 expression levels were significantly inversely proportional to the grade of differentiation of CSCC (P < 0.001 and P < 0.001, respectively). CONCLUSION These results indicated that EPHB4 and ephrin B2 can be useful markers for poorly differentiated CSCC.
Collapse
Affiliation(s)
- Shin Taek Oh
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Keum Jin Yang
- Clinical Research Institute, Daejeon St. Mary's Hospital, Daejeon, Korea
| | | | - Hyun Jeong Park
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dong Soo Yoo
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young Min Park
- Department of Dermatology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
5
|
Adu-Gyamfi EA, Czika A, Liu TH, Gorleku PN, Fondjo LA, Djankpa FT, Ding YB, Wang YX. Ephrin and Eph receptor signaling in female reproductive physiology and pathology†. Biol Reprod 2020; 104:71-82. [PMID: 32940657 DOI: 10.1093/biolre/ioaa171] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/19/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022] Open
Abstract
Ephrins are ligands of Eph receptors (Ephs); both of which are sorted into two classes, A and B. There are five types of ephrin-As (ephrin-A1-5) and three types of ephrin-Bs (ephrin-B1-3). Also, there are 10 types of EphAs (EphA1-10) and six types of EphBs (EphB1-6). Binding of ephrins to the Eph receptors activates signaling cascades that regulate several biological processes such as cellular proliferation, differentiation, migration, angiogenesis, and vascular remodeling. Clarification of their roles in the female reproductive system is crucial to understanding the physiology and pathology of this system. Such knowledge will also create awareness regarding the importance of these molecules in diagnostic, prognostic, and therapeutic medicine. Hence, we have discussed the involvement of these molecules in the physiological and pathological events that occur within the female reproductive system. The evidence so far suggests that the ephrins and the Eph receptors modulate folliculogenesis, ovulation, embryo transport, implantation, and placentation. Abnormal expression of some of these molecules is associated with polycystic ovarian syndrome, ovarian cancer, tubal pregnancy, endometrial cancer, uterine leiomyoma (fibroids), cervical cancer, and preeclampsia, suggesting the need to utilize these molecules in the clinical setting. To enhance a quick development of this gradually emerging field in female reproductive medicine, we have highlighted some "gaps in knowledge" that need prospective investigation.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Armin Czika
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Tai-Hang Liu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Philip Narteh Gorleku
- Department of Medical Imaging, School of Medical Sciences, University of Cape Coast, Cape Coast, Republic of Ghana
| | - Linda Ahenkorah Fondjo
- Department of Molecular Medicine, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Republic of Ghana
| | - Francis Tanam Djankpa
- Department of Physiology, School of Medical Sciences, University of Cape Coast, Cape Coast, Republic of Ghana
| | - Yu-Bin Ding
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ying-Xiong Wang
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China.,Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|