1
|
Hillson LVS, McCulloch AK, Edwards J, Dunne PD, O'Cathail SM, Roxburgh CS. Radiation-induced changes in gene expression in rectal cancer specimens. Clin Transl Oncol 2024; 26:1419-1428. [PMID: 38243085 PMCID: PMC11108951 DOI: 10.1007/s12094-023-03361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/26/2023] [Indexed: 01/21/2024]
Abstract
PURPOSE The standard-of-care for locally advanced rectal cancer is radiotherapy-based neoadjuvant therapy followed by surgical resection. This article reviews the evidence of molecular changes at the transcriptome level induced through radiotherapy in rectal cancer. METHODS The PubMed search "(radiation OR radiotherapy) cancer (transcriptome OR "gene expression") rectal" was used. The studies taken forward utilised gene-expression data on both pre-treatment and post-treatment rectal adenocarcinoma biospecimens from patients treated with RT-based neoadjuvant strategies. RESULTS Twelve publications met the review criteria. There was variation in approaches in terms of design, patient population, cohort size, timing of the post-radiotherapy sampling and method of measuring gene expression. Most of the post-treatment biospecimen retrievals were at resection. The literature indicates a broad upregulation of immune activity through radiotherapy using gene-expression data. CONCLUSION Future studies would benefit from standardised prospective approaches to sampling to enable the inclusion of timepoints relevant to the tumour and immune response.
Collapse
Affiliation(s)
- Lily Victoria Sarah Hillson
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK.
| | - Ashley Kathryn McCulloch
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Joanne Edwards
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Philip David Dunne
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Sean Michael O'Cathail
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Campbell Stuart Roxburgh
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
- Academic Unit of Surgery, Glasgow Royal Infirmary, Glasgow, UK
| |
Collapse
|
2
|
Yu H, Zhang C, Bai X, Yin H, Li X, Zhou X, He W, Kuang Y, Gou X, Li J. Identifying endoplasmic reticulum stress-related genes as new diagnostic and prognostic biomarkers in clear cell renal cell carcinoma. Transl Androl Urol 2024; 13:1-24. [PMID: 38404554 PMCID: PMC10891384 DOI: 10.21037/tau-23-374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/22/2023] [Indexed: 02/27/2024] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is one of the most common cancers worldwide, and its incidence is increasing every year. Endoplasmic reticulum stress (ERS) caused by protein misfolding has broad and profound effects on the progression and metastasis of various cancers. Accumulating evidence suggests that ERS is closely related to the occurrence and progression of ccRCC. This study aimed to identify ERS-related genes for evaluating the prognosis of ccRCC. Methods Transcriptomic expression profiles were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA), and clinical data were downloaded from the TCGA. First, the differentially expressed genes (DEGs) were analyzed using the limma package, and the DEGs related to ERS (ERS-DEGs) were identified from the GeneCards database. Second, a function and pathway enrichment analysis and a Gene Set Enrichment Analysis (GSEA) were performed. Third, a protein-protein interaction (PPI) network was constructed to identify the hub genes, and a gene-micro RNA (miRNA) network and gene-transcription factor (TF) network were established using the hub genes. Finally, a least absolute shrinkage and selection operator (LASSO) regression analysis was conducted to establish a diagnostic model, and a Cox analysis was used to analyze the correlations between the expression of the characteristic genes and the clinical characteristics. Results We identified 11 signature genes and established a diagnostic model. Further, the Cox analysis results revealed a correlation between the expression levels of the signature genes and the clinical characteristics. Ultimately, five signature genes (i.e., TNFSF13B, APOL1, COL5A3, and CDH5) were found to be associated with a poor prognosis. Conclusions This study suggests that TNFSF13B, APOL1, COL5A3, and CDH5 may have potential as prognostic biomarkers in ccRCC and may provide new evidence to support targeted therapy in ccRCC.
Collapse
Affiliation(s)
- Haitao Yu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunlin Zhang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuesong Bai
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hubin Yin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyuan Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Youlin Kuang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Olfactory Receptor OR7A17 Expression Correlates with All- Trans Retinoic Acid (ATRA)-Induced Suppression of Proliferation in Human Keratinocyte Cells. Int J Mol Sci 2021; 22:ijms222212304. [PMID: 34830183 PMCID: PMC8623719 DOI: 10.3390/ijms222212304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Olfactory receptors (ORs), which belong to the G-protein-coupled receptor family, have been widely studied as ectopically expressed receptors in various human tissues, including the skin. However, the physiological functions of only a few OR types have been elucidated in skin cells. All-trans retinoic acid (ATRA) is a well-known medication for various skin diseases. However, many studies have shown that ATRA can have adverse effects, resulting from the suppression of cell proliferation. Here, we investigated the involvement of OR7A17 in the ATRA-induced suppression of human keratinocyte (HaCaT) proliferation. We demonstrated that OR7A17 is expressed in HaCaT keratinocytes, and its expression was downregulated by ATRA. The ATRA-induced downregulation of OR7A17 was attenuated via RAR α or RAR γ antagonist treatment, indicating that the effects of ATRA on OR7A17 expression were mediated through nuclear retinoic acid receptor signaling. Moreover, we found that the overexpression of OR7A17 induced the proliferation of HaCaT cells while counteracting the antiproliferative effect of ATRA. Mechanistically, OR7A17 overexpression reversed the ATRA-induced attenuation of Ca2+ entry. Our findings indicated that ATRA suppresses cell proliferation through the downregulation of OR7A17 via RAR α- and γ-mediated retinoid signaling. Taken together, OR7A17 is a potential therapeutic target for ameliorating the anti-proliferative effects of ATRA.
Collapse
|
4
|
Liu Z, Lai J, Jiang H, Ma C, Huang H. Collagen XI alpha 1 chain, a potential therapeutic target for cancer. FASEB J 2021; 35:e21603. [PMID: 33999448 DOI: 10.1096/fj.202100054rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 11/11/2022]
Abstract
Extracellular matrix (ECM) plays an important role in the progression of cancer. Collagen is the most abundant component in ECM, and it is involved in the biological formation of cancer. Although type XI collagen is a minor fibrillar collagen, collagen XI alpha 1 chain (COL11A1) has been found to be upregulated in a variety of cancers including ovarian cancer, breast cancer, thyroid cancer, pancreatic cancer, non-small-cell lung cancer, and transitional cell carcinoma of the bladder. High levels of COL11A1 usually predict poor prognosis, while COL11A1 is related to angiogenesis, invasion, and drug resistance of cancer. However, little is known about the specific mechanism by which COL11A1 regulates tumor progression. Here, we have organized and summarized the recent developments regarding elucidation of the relationship between COL11A1 and various cancers, as well as the interaction between COL11A1 and intracellular signaling pathways. In addition, we have selected therapeutic agents targeting COL11A1. All these indicate the possibility of using COL11A1 as a target for cancer treatment.
Collapse
Affiliation(s)
- Ziqiang Liu
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
| | - Jiacheng Lai
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
| | - Heng Jiang
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
| | - Chengyuan Ma
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
| | - Haiyan Huang
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Liu M, Li F, Liu B, Jian Y, Zhang D, Zhou H, Wang Y, Xu Z. Profiles of immune cell infiltration and immune-related genes in the tumor microenvironment of esophageal squamous cell carcinoma. BMC Med Genomics 2021; 14:75. [PMID: 33691689 PMCID: PMC7944628 DOI: 10.1186/s12920-021-00928-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/28/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND As a complex system participating in tumor development and progression, the tumor microenvironment was poorly understood in esophageal cancer especially squamous cell carcinoma (ESCC). METHODS ESTIMATE algorithm is used to investigate tumor-infiltrating immune cells and prognostic genes which were associated with the tumor microenvironment in ESCC. RESULTS Based on the immune and stromal scores, ESCC samples were divided into high and low score groups and 299 overlapping differentially expressed genes were identified. Functional enrichment analysis showed that these genes were mainly involved in muscle-related function. Prognostic genes including COL9A3, GFRA2, and VSIG4 were used to establish a risk prediction model using Cox regression analyses. Then multivariate analysis showed that COL9A3 was an independent discriminator of a better prognosis. Kaplan-Meier survival analysis showed that the expression of COL9A3 was significantly correlated with the overall survival of ESCC patients. The area under the curve for the risk model in predicting 1- and 3- year survival rates were 0.660 and 0.942, respectively. The risk score was negatively correlated with plasma cells, while positively correlated with the proportions of activated CD4 memory T cells, M1 Macrophages and M2 Macrophages (p < 0.001 for each comparison). Gene set enrichment analysis suggested that both immune response and immune system process gene sets were significantly enriched in high-risk group. CONCLUSIONS Our study provided a comprehensive understanding of the TME in ESCC patients. The establishment of the risk model is valuable for the early identification of high-risk patients to facilitate individualized treatment and improve the possibility of immunotherapy response.
Collapse
Affiliation(s)
- Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Yongping Jian
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, People's Republic of China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
| | - Zhixiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, People's Republic of China.
- Division of Hematology and Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
6
|
Wang J, Pan W. The Biological Role of the Collagen Alpha-3 (VI) Chain and Its Cleaved C5 Domain Fragment Endotrophin in Cancer. Onco Targets Ther 2020; 13:5779-5793. [PMID: 32606789 PMCID: PMC7319802 DOI: 10.2147/ott.s256654] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
The collagen alpha-3 (VI) chain encoded by the gene COL6A3 is one of the 3 subunits of collagen VI which is a microfibrillar component of the extracellular matrix and is essential for the stable assembly process of collagen VI. The collagen alpha-3 (VI) chain and the cleaved C5 domain fragment, called endotrophin, are highly expressed in a variety of cancers and play a crucial role in cancer progression. The biological functions of endotrophin in tumors can be driven by adipocytes. Studies have demonstrated that endotrophin can directly affect the malignancy of cancer cells through TGF-β-dependent mechanisms, inducing epithelial–mesenchymal transition and fibrosis of the tumor microenvironment. In addition, endotrophin can also recruit macrophages and endothelial cells through chemotaxis to regulate the tumor microenvironment and ultimately promote tumor inflammation and angiogenesis. Furthermore, COL6A3 and endotrophin serve as novel diagnostic and prognostic biomarkers in cancer and contribute to clinical therapeutic applications in the future. In summary, in this review, we discuss the importance of the collagen alpha-3 (VI) chain and endotrophin in cancer progression, the future clinical applications of endotrophin and the remaining challenges in this field.
Collapse
Affiliation(s)
- Jingya Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Wensheng Pan
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
7
|
Lin D, Liang Y, Zheng D, Chen Y, Jing X, Lei M, Zeng Z, Zhou T, Wu X, Peng S, Huang K, Yang L, Xiao S, Liu J, Tao E. Novel biomolecular information in rotenone-induced cellular model of Parkinson's disease. Gene 2018; 647:244-260. [PMID: 29331484 DOI: 10.1016/j.gene.2018.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/19/2017] [Accepted: 01/05/2018] [Indexed: 01/12/2023]
Abstract
In order to uncover the remarkable pathogenic genes or molecular pathological process in Parkinson's disease (PD), we employed a microarray analysis upon the cellular PD model induced by rotenone. Compared to the control group, 2174 genes were screened out to be expressed differently in the rotenone-induced group by certain criterion. GO analysis and the pathways analysis showed the significant enrichment of genes that were associated with the biological process of cell cycle, apoptotic process, organelle fusion, mitochondrial lesion, endoplasmic reticulum stress and so on. Among these significant DE genes, some were sorted out to be involved in cell cycle and protein processing in endoplasmic reticulum. As the PPI network analysis showed, the interaction relationship of the DEGs involved in the process of protein generation in endoplasmic reticulum(ER) was clearly showed up. As a prediction, we emphasized the genes EDEM1, ATF4, TRAF2 might play central roles in the protein misfolding process during the progression of Parkinson's disease and these new-found genes might be the future research focus and therapeutic targets in PD.
Collapse
Affiliation(s)
- D Lin
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080,China
| | - Y Liang
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080,China
| | - D Zheng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080,China
| | - Y Chen
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080,China
| | - X Jing
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080,China
| | - M Lei
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080,China
| | - Z Zeng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080,China
| | - T Zhou
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080,China
| | - X Wu
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080,China
| | - S Peng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080,China
| | - K Huang
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080,China
| | - L Yang
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080,China
| | - S Xiao
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080,China
| | - J Liu
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080,China
| | - E Tao
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080,China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China.
| |
Collapse
|