1
|
Jiang Y, Qiu J, Ye N, Xu Y. Current status of cytokine-induced killer cells and combination regimens in breast cancer. Front Immunol 2025; 16:1476644. [PMID: 39981243 PMCID: PMC11839775 DOI: 10.3389/fimmu.2025.1476644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/23/2025] [Indexed: 02/22/2025] Open
Abstract
Breast cancer remains a significant health challenge worldwide, with substantial efforts aimed at understanding its pathogenesis, biological characteristics, and clinical triggers. Recently, immunotherapy such as the cytokine-induced killer cells combined with other drug therapies has offered new hope for patients with advanced breast cancer. However, the specific pathogenesis of combination regimens involving cytokine-induced killer cells remains elusive. Besides, the combination of immunotherapy with cytokine-induced killer cells might represent a novel breakthrough. This review outlines the current status of cytokine-induced killer cell therapies and their combination strategies, especially the combination of chemotherapy with molecularly targeted treatments, for the management of breast cancer.
Collapse
Affiliation(s)
- Yuancong Jiang
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, Shaoxing, China
| | - Jie Qiu
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, Shaoxing, China
| | - Nanwei Ye
- Department of Medical Research Center, Shaoxing People’s Hospital, Shaoxing, China
| | - Yingchun Xu
- Department of Breast and Thyroid Surgery, Shaoxing People’s Hospital, Shaoxing, China
| |
Collapse
|
2
|
Wu X, Sharma A, Oldenburg J, Weiher H, Essler M, Skowasch D, Schmidt-Wolf IGH. NKG2D Engagement Alone Is Sufficient to Activate Cytokine-Induced Killer Cells While 2B4 Only Provides Limited Coactivation. Front Immunol 2021; 12:731767. [PMID: 34691037 PMCID: PMC8529192 DOI: 10.3389/fimmu.2021.731767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022] Open
Abstract
Cytokine-induced killer (CIK) cells are an ex vivo expanded heterogeneous cell population with an enriched NK-T phenotype (CD3+CD56+). Due to the convenient and relatively inexpensive expansion capability, together with low incidence of graft versus host disease (GVHD) in allogeneic cancer patients, CIK cells are a promising candidate for immunotherapy. It is well known that natural killer group 2D (NKG2D) plays an important role in CIK cell-mediated antitumor activity; however, it remains unclear whether its engagement alone is sufficient or if it requires additional co-stimulatory signals to activate the CIK cells. Likewise, the role of 2B4 has not yet been identified in CIK cells. Herein, we investigated the individual and cumulative contribution of NKG2D and 2B4 in the activation of CIK cells. Our analysis suggests that (a) NKG2D (not 2B4) is implicated in CIK cell (especially CD3+CD56+ subset)-mediated cytotoxicity, IFN-γ secretion, E/T conjugate formation, and degranulation; (b) NKG2D alone is adequate enough to induce degranulation, IFN-γ secretion, and LFA-1 activation in CIK cells, while 2B4 only provides limited synergy with NKG2D (e.g., in LFA-1 activation); and (c) NKG2D was unable to costimulate CD3. Collectively, we conclude that NKG2D engagement alone suffices to activate CIK cells, thereby strengthening the idea that targeting the NKG2D axis is a promising approach to improve CIK cell therapy for cancer patients. Furthermore, CIK cells exhibit similarities to classical invariant natural killer (iNKT) cells with deficiencies in 2B4 stimulation and in the costimulation of CD3 with NKG2D. In addition, based on the current data, the divergence in receptor function between CIK cells and NK (or T) cells can be assumed, pointing to the possibility that molecular modifications (e.g., using chimeric antigen receptor technology) on CIK cells may need to be customized and optimized to maximize their functional potential.
Collapse
Affiliation(s)
- Xiaolong Wu
- Department of Integrated Oncology, Center of Integrated Oncology (CIO) Bonn, University Hospital Bonn, Bonn, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center of Integrated Oncology (CIO) Bonn, University Hospital Bonn, Bonn, Germany.,Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
| | - Hans Weiher
- Department of Applied Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany
| | - Markus Essler
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany
| | - Dirk Skowasch
- Department of Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center of Integrated Oncology (CIO) Bonn, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
3
|
Li P, Hao S, Ye Y, Wei J, Tang Y, Tan L, Liao Z, Zhang M, Li J, Gui C, Xiao J, Huang Y, Chen X, Cao J, Luo J, Chen W. Identification of an Immune-Related Risk Signature Correlates With Immunophenotype and Predicts Anti-PD-L1 Efficacy of Urothelial Cancer. Front Cell Dev Biol 2021; 9:646982. [PMID: 33816497 PMCID: PMC8012532 DOI: 10.3389/fcell.2021.646982] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) treatment has been used to treat advanced urothelial cancer. Molecular markers might improve risk stratification and prediction of ICI benefit for urothelial cancer patients. We analyzed 406 cases of bladder urothelial cancer from The Cancer Genome Atlas (TCGA) data set and identified 161 messenger RNAs (mRNAs) as differentially expressed immunity genes (DEIGs). Using the LASSO Cox regression model, an eight-mRNA-based risk signature was built. We validated the prognostic and predictive accuracy of this immune-related risk signature in 348 metastatic urothelial cancer (mUC) samples treated with anti-PD-L1 (atezolizumab) from IMvigor210. We built an immune-related risk signature based on the eight mRNAs: ANXA1, IL22, IL9R, KLRK1, LRP1, NRG3, SEMA6D, and STAP2. The eight-mRNA-based risk signature successfully categorizes patients into high-risk and low-risk groups. Overall survival was significantly different between these groups, regardless if the initial TCGA training set, the internal TCGA testing set, all TCGA set, or the ICI treatment set. The hazard ratio (HR) of the high-risk group to the low-risk group was 3.65 (p < 0.0001), 2.56 (p < 0.0001), 3.36 (p < 0.0001), and 2.42 (p = 0.0009). The risk signature was an independent prognostic factor for prediction survival. Moreover, the risk signature was related to immunity characteristics. In different tumor mutational burden (TMB) subgroups, it successfully categorizes patients into high-risk and low-risk groups, with significant differences of clinical outcome. Our eight-mRNA-based risk signature is a stable biomarker for urothelial cancer and might be able to predict which patients benefit from ICI treatment. It might play a role in precision individualized immunotherapy.
Collapse
Affiliation(s)
- Pengju Li
- Department of Urology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shihui Hao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yongkang Ye
- Department of Urology, Dongguan People's Hospital, Affiliated to Southern Medical University, Dongguan, China
| | - Jinhuan Wei
- Department of Urology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yiming Tang
- Department of Urology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lei Tan
- Department of Urology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhuangyao Liao
- Department of Urology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingxiao Zhang
- Department of Urology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiaying Li
- Department of Urology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chengpeng Gui
- Department of Urology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiefei Xiao
- Department of Extracorporeal Circulation, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yong Huang
- Department of Urology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xu Chen
- Department of Urology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiazheng Cao
- Department of Urology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yet-sen University, Jiangmen, China
| | - Junhang Luo
- Department of Urology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Chen
- Department of Urology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Luo D, Dong XW, Yan B, Liu M, Xue TH, Liu H, You JH, Li F, Wang ZL, Chen ZN. MG132 selectively upregulates MICB through the DNA damage response pathway in A549 cells. Mol Med Rep 2018; 19:213-220. [PMID: 30483783 PMCID: PMC6297755 DOI: 10.3892/mmr.2018.9676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/23/2018] [Indexed: 12/26/2022] Open
Abstract
Natural killer (NK) cells recognize stress-activated NK group 2, member D (NKG2D) ligands in tumors. In the present study, the expression levels of NKG2D ligands were examined in four lung cancer cell lines (A549, PLA801D, NCI-H157 and NCI-H520). In the A549 cells, the expression of MHC class I polypeptiderelated sequence (MIC)A/B and UL16 binding protein (ULBP)1 was weak, the expression of ULBP2 was typical, and neither ULBP3 nor ULBP4 were expressed. The mechanism underlying the regulatory effect of a cancer treatment agent on the expression of NKG2D ligands was investigated using the proteasome inhibitor MG132. Following treatment for 8 h with MG132, the transcription levels of MICB and ULBP1 were upregulated 10.62- and 11.09-fold, respectively, and the expression levels of MICB and ULBP1 were increased by 68.18 and 23.65%, respectively. Notably, MICB exhibited significant time-dependent change. MG132 increased the transcription of MICB by acting at a site in the 480-bp MICB upstream promoter. The activity of the MICB promoter was upregulated 1.77-fold following treatment with MG132. MG132 treatment improved the cytotoxicity of NK cells, which was partially blocked by an antibody targeting NKG2D, and more specifically the MICB molecule. The expression of MICB induced by MG132 was inhibited by KU-55933 [ataxia telangiectasia mutated (ATM) kinase inhibitor], wortmannin (phosphoinositide 3 kinase inhibitor) and caffeine (ATM/ATM-Rad3-related inhibitor). The phosphorylation of checkpoint kinase 2 (Chk2), an event associated with DNA damage, was observed following treatment with MG132. These results indicated that MG132 selectively upregulates the expression of MICB in A549 cells, and increases the NKG2D-mediated cytotoxicity of NK cells. The regulatory effect of MG132 may be associated with the activation of Chk2, an event associated with DNA damage. The combination of MG132 with NK cell immunotherapy may have a synergistic effect that improves the therapeutic effect of lung cancer treatment.
Collapse
Affiliation(s)
- Dan Luo
- College of Life Science and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, P.R. China
| | - Xi-Wen Dong
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Bing Yan
- Department of Oncology, Hainan Branch of General Hospital of PLA, Sanya, Hainan 572013, P.R. China
| | - Mei Liu
- Department of Oncology, Hainan Branch of General Hospital of PLA, Sanya, Hainan 572013, P.R. China
| | - Tian-Hui Xue
- Department of Oncology, Hainan Branch of General Hospital of PLA, Sanya, Hainan 572013, P.R. China
| | - Hui Liu
- Department of Oncology, Hainan Branch of General Hospital of PLA, Sanya, Hainan 572013, P.R. China
| | - Jun-Hao You
- Department of Oncology, Hainan Branch of General Hospital of PLA, Sanya, Hainan 572013, P.R. China
| | - Fang Li
- Department of Oncology, Hainan Branch of General Hospital of PLA, Sanya, Hainan 572013, P.R. China
| | - Zi-Ling Wang
- College of Life Science and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, P.R. China
| | - Zhi-Nan Chen
- College of Life Science and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, P.R. China
| |
Collapse
|
5
|
Espinoza JL, Minami M. Sensing Bacterial-Induced DNA Damaging Effects via Natural Killer Group 2 Member D Immune Receptor: From Dysbiosis to Autoimmunity and Carcinogenesis. Front Immunol 2018; 9:52. [PMID: 29422899 PMCID: PMC5788971 DOI: 10.3389/fimmu.2018.00052] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/09/2018] [Indexed: 12/23/2022] Open
Abstract
The human genome is constantly exposed to exogenous and endogenous DNA damaging factors that frequently cause DNA damages. Unless repaired, damaged DNA can result in deleterious mutations capable of causing malignant transformation. Accordingly, cells have developed an advanced and effective surveillance system, the DNA damage response (DDR) pathway, which maintains genetic integrity. In addition to well-defined outcomes, such as cell cycle arrest, apoptosis, and senescence, another consequence of DDR activation is the induction of natural killer group 2 member D ligands (NKG2D-Ls) on the surface of stressed cells. Consequently, NKG2D-Ls-expressing cells are recognized and eliminated by NKG2D receptor-expressing immune cells, including NK cells, and various subsets of T-cells. Recent pieces of evidence indicate that commensal microbial imbalance (known as dysbiosis) can trigger DDR activation in host cells, which may result in sustained inflammatory responses. Therefore, dysbiosis can be seen as an important source of DNA damage agents that may be partially responsible for the overexpression of NKG2D-Ls on intestinal epithelial cells that is frequently observed in patients with inflammatory bowel disease and other disorders associated with altered human microbiota, including the development of colorectal cancer. In this article, we discuss recent evidence that appears to link an altered human microbiota with autoimmunity and carcinogenesis via the activation of DDR signals and the induction of NKG2D-Ls in stressed cells.
Collapse
Affiliation(s)
- J Luis Espinoza
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Mika Minami
- Faculty of Medicine, Kindai University, Higashi-osaka, Japan
| |
Collapse
|
6
|
|