1
|
Al-Harazi O, Kaya IH, El Allali A, Colak D. A Network-Based Methodology to Identify Subnetwork Markers for Diagnosis and Prognosis of Colorectal Cancer. Front Genet 2021; 12:721949. [PMID: 34790220 PMCID: PMC8591094 DOI: 10.3389/fgene.2021.721949] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022] Open
Abstract
The development of reliable methods for identification of robust biomarkers for complex diseases is critical for disease diagnosis and prognosis efforts. Integrating multi-omics data with protein-protein interaction (PPI) networks to investigate diseases may help better understand disease characteristics at the molecular level. In this study, we developed and tested a novel network-based method to detect subnetwork markers for patients with colorectal cancer (CRC). We performed an integrated omics analysis using whole-genome gene expression profiling and copy number alterations (CNAs) datasets followed by building a gene interaction network for the significantly altered genes. We then clustered the constructed gene network into subnetworks and assigned a score for each significant subnetwork. We developed a support vector machine (SVM) classifier using these scores as feature values and tested the methodology in independent CRC transcriptomic datasets. The network analysis resulted in 15 subnetwork markers that revealed several hub genes that may play a significant role in colorectal cancer, including PTP4A3, FGFR2, PTX3, AURKA, FEN1, INHBA, and YES1. The 15-subnetwork classifier displayed over 98 percent accuracy in detecting patients with CRC. In comparison to individual gene biomarkers, subnetwork markers based on integrated multi-omics and network analyses may lead to better disease classification, diagnosis, and prognosis.
Collapse
Affiliation(s)
- Olfat Al-Harazi
- Biostatistics, Epidemiology and Scientific Computing Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ibrahim H Kaya
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Dilek Colak
- Biostatistics, Epidemiology and Scientific Computing Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Chen Y, Liu P, Shen D, Liu H, Xu L, Wang J, Shen D, Sun H, Wu H. FAM172A inhibits EMT in pancreatic cancer via ERK-MAPK signaling. Biol Open 2020; 9:bio048462. [PMID: 31988090 PMCID: PMC7044457 DOI: 10.1242/bio.048462] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/05/2020] [Indexed: 12/25/2022] Open
Abstract
FAM172A, as a newly discovered gene, is little known in cancer development, especially in pancreatic cancer (PC). We investigated the potential role and molecular mechanism of FAM172A in epithelial to mesenchymal transition (EMT) in both human clinical samples and PC cells. FAM172A was downregulated in human PC tissues compared with that in non-cancerous pancreas cells by immunohistochemistry and qRT-PCR. FAM172A expression was negatively associated with tumor size (P=0.015), T stage (P=0.006), lymph node metastasis (P=0.028) and the worst prognosis of PC patients (P=0.004). Meanwhile, a positive relationship between FAM172A and E-cadherin (E-cad) (r=0.381, P=0.002) was observed in clinical samples, which contributed to the better prognosis of PC patients (P=0.014). FAM172A silencing induced EMT in both AsPC-1 and BxPC-3 cells, including inducing the increase of Vimentin, MMP9 and pERK and the decrease of E-cad and β-catenin expression, stimulating EMT-like cell morphology and enhancing cell invasion and migration in PC cells. However, MEK1 inhibitor PD98059 reversed FAM172A silencing-enhanced EMT in PC cells. We conclude that FAM172A inhibits EMT of PC cells via ERK-MAPK signaling.
Collapse
Affiliation(s)
- Ying Chen
- Department of Intervention Therapy and Vascular Surgery, The Central Hospital of Huludao City, Huludao City, Liaoning Province, 125399 China
| | - Peihui Liu
- Department of Intervention Therapy and Vascular Surgery, The Central Hospital of Huludao City, Huludao City, Liaoning Province, 125399 China
| | - Di Shen
- Department of Intervention Therapy and Vascular Surgery, The Central Hospital of Huludao City, Huludao City, Liaoning Province, 125399 China
| | - Han Liu
- Department of Intervention Therapy and Vascular Surgery, The Central Hospital of Huludao City, Huludao City, Liaoning Province, 125399 China
| | - Lepeng Xu
- Department of Intervention Therapy and Vascular Surgery, The Central Hospital of Huludao City, Huludao City, Liaoning Province, 125399 China
| | - Jian Wang
- Department of Intervention Therapy and Vascular Surgery, The Central Hospital of Huludao City, Huludao City, Liaoning Province, 125399 China
| | - Daguang Shen
- Department of Intervention Therapy and Vascular Surgery, The Central Hospital of Huludao City, Huludao City, Liaoning Province, 125399 China
| | - He Sun
- Department of Intervention Therapy and Vascular Surgery, The Central Hospital of Huludao City, Huludao City, Liaoning Province, 125399 China
| | - Hongkui Wu
- Department of Intervention Therapy and Vascular Surgery, The Central Hospital of Huludao City, Huludao City, Liaoning Province, 125399 China
| |
Collapse
|
3
|
Zhang J, Sun M, Hao M, Diao K, Wang J, Li S, Cao Q, Mi X. FAM53A Affects Breast Cancer Cell Proliferation, Migration, and Invasion in a p53-Dependent Manner. Front Oncol 2019; 9:1244. [PMID: 31799197 PMCID: PMC6874147 DOI: 10.3389/fonc.2019.01244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022] Open
Abstract
Family with sequence similarity 53-member A (FAM53A) is an uncharacterized protein with a suspected but unclear role in tumorigenesis. In this study, we examined its role in breast cancer. Immunohistochemical staining of specimens from 199 cases of breast cancer demonstrated that FAM53A levels were negatively correlated with p53 status. In the p53 wild-type breast cancer cell line MCF-7, FAM53A overexpression inhibited cell migration, invasion, and proliferation, downregulated the expression of Snail, cyclin D1, RhoA, RhoC, and MMP9, and decreased mitogen-activated protein kinase kinase (MEK) and extracellular-signal regulated kinase (ERK) phosphorylation. Concurrently, it upregulated E-cadherin and p21 expression levels. Interestingly, opposite trends were observed in the p53-null breast cancer cell line MDA-MB-231. The MEK inhibitor PD98059 reduced the biological effects of FAM53A knockdown in MCF-7 cells and FAM53A overexpression in MDA-MB-231 cells, suggesting that FAM53A affects breast cancer through the MEK-ERK pathway. Silencing TP53 in MCF-7 cells and stably expressing wild-type p53 in MDA-MB-231 cells confirmed that the effects of FAM53A signaling through the MEK/ERK pathway depended on the p53 status of the cells. These results suggest that FAM53A acts as a tumor suppressor in p53-positive breast cancer by modulating the MEK-ERK pathway, but may be a potential candidate for targeted anticancer therapies in p53-negative breast cancer.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Mingfang Sun
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Miaomiao Hao
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Kexin Diao
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Jian Wang
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Shiping Li
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Qixue Cao
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiaoyi Mi
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
4
|
DiStasio A, Paulding D, Chaturvedi P, Stottmann RW. Nubp2 is required for cranial neural crest survival in the mouse. Dev Biol 2019; 458:189-199. [PMID: 31733190 DOI: 10.1016/j.ydbio.2019.10.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/16/2019] [Accepted: 10/26/2019] [Indexed: 12/31/2022]
Abstract
The N-ethyl-N-nitrosourea (ENU) ←forward genetic screen is a useful tool for the unbiased discovery of novel mechanisms regulating developmental processes. We recovered the dorothy mutation in such a screen designed to recover recessive mutations affecting craniofacial development in the mouse. Dorothy embryos die prenatally and exhibit many striking phenotypes commonly associated with ciliopathies, including a severe midfacial clefting phenotype. We used exome sequencing to discover a missense mutation in nucleotide binding protein 2 (Nubp2) to be causative. This finding was confirmed by a complementation assay with the dorothy allele and an independent Nubp2 null allele (Nubp2null). We demonstrated that Nubp2 is indispensable for embryogenesis. NUBP2 is implicated in both the cytosolic iron/sulfur cluster assembly pathway and negative regulation of ciliogenesis. Conditional ablation of Nubp2 in the neural crest lineage with Wnt1-cre recapitulates the dorothy craniofacial phenotype. Using this model, we found that the proportion of ciliated cells in the craniofacial mesenchyme was unchanged, and that markers of the SHH, FGF, and BMP signaling pathways are unaltered. Finally, we show evidence that the phenotype results from a marked increase in apoptosis within the craniofacial mesenchyme.
Collapse
Affiliation(s)
| | | | - Praneet Chaturvedi
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, OH, 45229, USA
| | - Rolf W Stottmann
- Division of Human Genetics, OH, 45229, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA; Shriner's Hospital for Children - Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|