1
|
Ishibashi N, Maebayashi T, Aizawa T, Sakaguchi M, Okada M. Coronavirus disease 2019 (COVID-19) in patients before, during, or after lung irradiation, and serum SP-A and SP-D levels. Thorac Cancer 2022; 13:3200-3207. [PMID: 36178187 PMCID: PMC9539315 DOI: 10.1111/1759-7714.14677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The correlation between COVID-19 and RT has not been determined to date and remains a clinical question. The aim of this study was to evaluate coronavirus disease 2019 (COVID-19) pneumonia before, during, and after radiation therapy (RT) regarding the radiation doses, radiation pneumonitis, and surfactant protein levels. METHODS We evaluated patients diagnosed with COVID-19 before, during, or after RT for the lung between August 2020 and April 2022. In patients with breast cancer, the RT dose to the ipsilateral lung was determined. In all other patients, bilateral lung RT doses were determined. Patients diagnosed with COVID-19 after RT were evaluated to determine whether radiation pneumonitis had worsened compared with before RT. The serum levels of the surfactant proteins SP-A and SP-D were measured before, during, and after RT. RESULTS The patients included in the study comprised three men (27.3%) and eight women (72.7%). The primary cancer sites were the breast (n = 7; 63.7%), lung (n = 2; 18.1%), esophagus (n = 1; 9.1%), and tongue (9.1%). COVID-19 was diagnosed before RT in four patients, during RT in two patients, and after RT in five patients. Six (54.5%) patients developed COVID-19 pneumonia. Radiation pneumonitis grade ≥2 was not identified in any patient, and radiation pneumonitis did not worsen after RT in any patient. No rapid increases or decreases in SP-A and SP-D levels occurred after the diagnosis of COVID-19 in all patients regardless of RT timing. CONCLUSIONS COVID-19 did not appear to result in lung toxicity and surfactant protein levels did not change dramatically.
Collapse
Affiliation(s)
- Naoya Ishibashi
- Department of RadiologyNihon University, School of MedicineTokyoJapan,Department of RadiologyNihon University HospitalTokyoJapan
| | | | - Takuya Aizawa
- Department of RadiologyNihon University, School of MedicineTokyoJapan
| | | | - Masahiro Okada
- Department of RadiologyNihon University, School of MedicineTokyoJapan
| |
Collapse
|
2
|
Sato H, Ito F, Hasegawa K, Saga R, Hosokawa Y, Tanaka M, Aoki M. Identification of novel prognostic factors focusing on clinical outcomes in patients with non-small cell lung cancer after stereotactic body radiotherapy. Oncol Lett 2022; 23:79. [PMID: 35111248 PMCID: PMC8771648 DOI: 10.3892/ol.2022.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/17/2021] [Indexed: 11/05/2022] Open
Abstract
Stereotactic body radiotherapy (SBRT) has attracted extensive attention as an effective treatment for patients with early-stage non-small cell lung cancer. However, the factors affecting prognosis after SBRT have not been fully elucidated. The aim of the present study was to investigate the prognostic factors associated with overall survival (OS) and local control (LC) after SBRT. Between March 2003 and March 2020, 497 patients with primary or oligo-metastatic lung cancer who underwent SBRT treatment were retrospectively reviewed. Univariate analysis was performed against various factors related to patient and tumor characteristics using Kaplan-Meier method. Furthermore, the factors with statistically significant differences identified via univariate analysis underwent a stratified Cox proportional hazard regression analysis. The median follow-up period for all patients was 26.17 months (range, 0.36-194.37), and the 5-year OS and LC rates were 66.3 and 86.0%, respectively. Multivariate analysis showed that surfactant protein-D (SP-D), tumor CT values (TCTV) and iodine density values (IDV) were independent prognostic factors for OS, and histology, TCTV and IDV were for LC. Although histology was not selected as a prognostic factor related to OS, it was indicated that patients with squamous cell carcinoma were associated with the SP-D high group compared with the SP-D normal group. In addition, TCTV was correlated to water density values, which tended to decrease with increasing IDV. From these findings, SP-D and TCTV were identified as potential new candidate prognostic factors after SBRT, and it is possible that combining SP-D and histology, and TCTV and IDV may improve the accuracy of prognostic prediction.
Collapse
Affiliation(s)
- Hikari Sato
- Department of Radiation Sciences, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Fumiki Ito
- Department of Radiological Technology, Hirosaki University School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| | - Kazuki Hasegawa
- Department of Radiation Sciences, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Ryo Saga
- Department of Radiation Sciences, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Yoichiro Hosokawa
- Department of Radiation Sciences, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Mitsuki Tanaka
- Department of Radiation Oncology, Graduate School of Medicine, Hirosaki University, Hirosaki, Aomori 036-8562, Japan
| | - Masahiko Aoki
- Department of Radiation Oncology, Graduate School of Medicine, Hirosaki University, Hirosaki, Aomori 036-8562, Japan
| |
Collapse
|
3
|
Śliwińska-Mossoń M, Wadowska K, Trembecki Ł, Bil-Lula I. Markers Useful in Monitoring Radiation-Induced Lung Injury in Lung Cancer Patients: A Review. J Pers Med 2020; 10:72. [PMID: 32722546 PMCID: PMC7565537 DOI: 10.3390/jpm10030072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/06/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
In 2018, lung cancer was the most common cancer and the most common cause of cancer death, accounting for a 1.76 million deaths. Radiotherapy (RT) is a widely used and effective non-surgical cancer treatment that induces remission in, and even cures, patients with lung cancer. However, RT faces some restrictions linked to the radioresistance and treatment toxicity, manifesting in radiation-induced lung injury (RILI). About 30-40% of lung cancer patients will develop RILI, which next to the local recurrence and distant metastasis is a substantial challenge to the successful management of lung cancer treatment. These data indicate an urgent need of looking for novel, precise biomarkers of individual response and risk of side effects in the course of RT. The aim of this review was to summarize both preclinical and clinical approaches in RILI monitoring that could be brought into clinical practice. Next to transforming growth factor-β1 (TGFβ1) that was reported as one of the most important growth factors expressed in the tissues after ionizing radiation (IR), there is a group of novel, potential biomarkers-microRNAs-that may be used as predictive biomarkers in therapy response and disease prognosis.
Collapse
Affiliation(s)
- Mariola Śliwińska-Mossoń
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry and Laboratory Haematology, Wroclaw Medical University, ul. Borowska 211A, 50-556 Wroclaw, Poland; (M.Ś.-M.); (I.B.-L.)
| | - Katarzyna Wadowska
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry and Laboratory Haematology, Wroclaw Medical University, ul. Borowska 211A, 50-556 Wroclaw, Poland; (M.Ś.-M.); (I.B.-L.)
| | - Łukasz Trembecki
- Department of Radiation Oncology, Lower Silesian Oncology Center, pl. Hirszfelda 12, 53-413 Wroclaw, Poland;
- Department of Oncology, Faculty of Medicine, Wroclaw Medical University, pl. Hirszfelda 12, 53-413 Wroclaw, Poland
| | - Iwona Bil-Lula
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry and Laboratory Haematology, Wroclaw Medical University, ul. Borowska 211A, 50-556 Wroclaw, Poland; (M.Ś.-M.); (I.B.-L.)
| |
Collapse
|
4
|
Fractional exhaled nitric oxide as a potential biomarker for radiation pneumonitis in patients with non-small cell lung cancer: A pilot study. Clin Transl Radiat Oncol 2019; 19:103-109. [PMID: 31650045 PMCID: PMC6804548 DOI: 10.1016/j.ctro.2019.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022] Open
Abstract
Weekly FeNO during radiotherapy can be useful in predicting radiation pneumonitis. 6 months of clinical follow-up is necessary to detect delayed radiation pneumonitis. Pulmonary function tests are not predictable for radiation pneumonitis.
Introduction The aim of the study was to investigate repetitive fractional exhaled nitric oxide (FeNO) measurements during high-dose radiation therapy (HDRT) and to evaluate the use of FeNO to predict symptomatic radiation pneumonitis (RP) in patients being treated for non-small cell lung cancer (NSCLC). Materials and methods A total of 50 patients with NSCLC referred for HDRT were enrolled. FeNO was measured at baseline, weekly during HDRT, one month- and every third month after HDRT for a one-year follow-up period. The mean FeNO(visit 0-6) was calculated using the arithmetic mean of the baseline and weekly measurements during HDRT. Patients with grade ≥ 2 of RP according to the Common Terminology Criteria for Adverse Events (CTCAE) were considered symptomatic. Results A total of 42 patients completed HDRT and weekly FeNO measurements. Grade ≥ 2 of RP was diagnosed in 24 (57%) patients. The mean FeNO(visit 0-6) ± standard deviation in patients with and without RP was 15.0 ± 7.1 ppb (95%CI: 12.0–18.0) and 10.3 ± 3.4 ppb (95%CI: 8.6–11.9) respectively with significant differences between the groups (p = 0.0169, 95%CI: 2.3–2.6). The leave-one-out cross-validated cut-off value of the mean FeNO(visit 0-6) ≥ 14.8 ppb was predictive of grade ≥ 2 RP with a specificity of 71% and a positive predictive value of 78%. Conclusions The mean FeNO(visit 0-6) in patients with symptomatic RP after HDRT for NSCLC was significantly higher than in patients without RP and may serve as a potential biomarker for RP.
Collapse
|
5
|
Xu L, Jiang J, Li Y, Zhang L, Li Z, Xian J, Jiang C, Diao Y, Su X, Xu H, Zhang Y, Zhang T, Yang Z, Tan B, Li H. Genetic variants of SP-D confer susceptibility to radiation pneumonitis in lung cancer patients undergoing thoracic radiation therapy. Cancer Med 2019; 8:2599-2611. [PMID: 30897289 PMCID: PMC6536953 DOI: 10.1002/cam4.2088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/15/2019] [Accepted: 01/24/2019] [Indexed: 12/25/2022] Open
Abstract
Background Surfactant protein D (SP‐D) is an innate immunity molecule in the alveoli. However, the associations between genetic variants of SP‐D and radiation pneumonitis (RP) have never been investigated. Methods The Linkage disequilibrium of SP‐D and tagSNPs were analyzed by using Haploview 4.1. Eight tagSNPs were genotyped among 396 lung cancer patients who received thoracic radiation therapy with follow–up time (median [P25, P75]: 11[6, 18]) using improved multiplex ligation detection reaction (iMLDR). The associations between clinical characteristics, tagSNP alleles, genotypes, haplotypes and onset time of grade ≥2 or ≥3 RP were evaluated by using univariate and multivariate Cox proportional hazard regression model. Results Three tagSNPs of SP‐D (rs1998374, rs911887 and rs2255326) were significantly associated with grade ≥2 RP in multivariate analysis with multiple testing (Q test). The rs199874 had a protective effect for grade ≥2 RP in the dominant model (Hazard ratio (HR), 0.575; 95% confidence interval (CI), 0.378‐0.875). The homozygous mutant genotype for rs911887 had risk effect for grade ≥2 RP (HR, 2.209; 95% CI, 1.251‐3.902). The A mutant allele of rs2255326 also showed an elevated risk for grade ≥2 RP (HR, 1.777; 95% CI, 1.283‐2.461) and this risk effect was still significant in the recessive genetic model (HR, 3.320; 95% CI, 1.659‐6.644) and dominant genetic model (HR, 1.773; 95% CI, 1.166‐2.696). Compared to the lung cancer patients bearing the most common haplotype C‐G‐T, the patients bearing the haplotype T‐A‐C (rs1998374‐rs2255326‐rs911887) showed a significant risk of both grade ≥2 RP (HR, 1.885; 95% CI, 1.284‐2.765) and grade ≥3 RP (HR, 2.256; 95% CI, 1.248‐4.080). Conclusions Genetic variants of SP‐D were associated with risk of RP development in lung cancer patients receiving thoracic radiotherapy.
Collapse
Affiliation(s)
- Li Xu
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China.,Department of Nutrition and Dietetics, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Junhong Jiang
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China.,Department of Oncology, The First People's Hospital of Neijiang, Neijiang, China
| | - Yunming Li
- Department of Statistics, The General Hospital of Western Theater Command, Chengdu, China.,Department of Statistics, College of Mathematics, Southwest Jiaotong University, Chengdu, China
| | - Ling Zhang
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China
| | - Zhihui Li
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China
| | - Jing Xian
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China
| | - Chaoyang Jiang
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China
| | - Yong Diao
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China
| | - Xiaomei Su
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China
| | - Hongyu Xu
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China
| | - Yue Zhang
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China
| | - Tao Zhang
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China
| | - Zhenzhou Yang
- Cancer Center, The Second affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bangxian Tan
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Hua Li
- Cancer Center, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|