1
|
Joyroy N, Ngiwsara L, Wannachat S, Mingma R, Svasti J, Wongchawalit J. Unveiling the potentials of Lawsonia inermis L.: its antioxidant, antimicrobial, and anticancer potentials. PeerJ 2025; 13:e19170. [PMID: 40226544 PMCID: PMC11992976 DOI: 10.7717/peerj.19170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/24/2025] [Indexed: 04/15/2025] Open
Abstract
Background Lawsonia inermis L., commonly known as henna, is a traditional medicinal Indian plant used for anti-dandruff and antifungal purposes. The plant is rich in phytochemicals and is believed to have significant bioactivity potential. However, limited information is available on the phytochemical compositions of L. inermis cultivars in Thailand. Therefore, this study aims to assess the phytochemical constituents and investigate the bioactivity of L. inermis extract. Methods L. inermis leaf extracts were prepared by macerating in ethanol (HenE), methanol (HenM), chloroform (HenC), hexane (HenH), and water boiling (HenW). The phenolic and flavonoid contents were determined by Folin-Ciocalteu and aluminum chloride colorimetric methods. High-performance liquid chromatography (HPLC) was performed to qualify polyphenolic contents. Antioxidant activities were evaluated by using 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) methods. Moreover, antibacterial activity was tested against two gram-positive and four gram-negative bacteria by the agar well diffusion and the broth dilution methods, and antifungal activity was carried out using the poisoned food technique. Additionally, the cytotoxicity of the extracts against MDA-MB-231, SW480, A549 and A549RT-eto cancer cell lines was determined by using (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) (MTT) assay. The scratch wound healing assay was performed to determine the effect of anti-migration on A549 cells. Results Quantitative analysis revealed that HenE and HenM extracts had high phenolic and flavonoid contents. Gallic acid, catechin, ellagic acid, apigetrin, lawsone and quercetin were identified by HPLC. The HenE and HenM extracts exhibited strong antioxidant properties, and the extracts showed different inhibition growth against bacteria tested, especially B. cereus and S. aureus. In addition, all extracts had potential inhibitory activity to all fungal strains, especially HenE and Hen M, which exhibited strong antifungus activity against Penicillium sp. All extracts showed cytotoxic effects in the cell lines MDA-MB-231, SW480, A549 and A549RT-eto, except HenH. The HenE and HenM exhibited the best IC50 values of 57.33 ± 5.56 µg/ml and 65.00 ± 7.07 µg/ml against SW480 cells, respectively. The HenC, HenW, and HenH were found to suppress A549 cells migration. Discussion and Conclusion This study revealed that the L. inermis extracts, particularly those obtained from polar solvents (HenE and HenM), had a strong potency for antioxidant, antibacterial, and anticancer properties. Our findings highlight the valuable biological properties of extracts that can be promoted through additional investigation into their applications in Thailand for medicinal and industrial purposes.
Collapse
Affiliation(s)
- Nantikan Joyroy
- Department of Science and Bioinnovation, Faculty of Liberal Arts and Sciences, Kasetsart University, Nakhon Pathom, Thailand
| | - Lukana Ngiwsara
- Laboratory of Biochemistry, Chulaborn Research Institute, Chulaborn Research Institute, Bangkok, Thailand
| | - Siriporn Wannachat
- Department of Animal Science, Faculty of Agricullture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Ratchanee Mingma
- Department of Science and Bioinnovation, Faculty of Liberal Arts and Sciences, Kasetsart University, Nakhon Pathom, Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulaborn Research Institute, Chulaborn Research Institute, Bangkok, Thailand
| | - Jintanart Wongchawalit
- Department of Science and Bioinnovation, Faculty of Liberal Arts and Sciences, Kasetsart University, Nakhon Pathom, Thailand
| |
Collapse
|
2
|
Wang D, Wang Z, Dai X, Zhang L, Li M. Apigenin and Temozolomide Synergistically Inhibit Glioma Growth Through the PI3K/ AKT Pathway. Cancer Biother Radiopharm 2024; 39:125-132. [PMID: 33471569 DOI: 10.1089/cbr.2020.4283] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: Glioma is a devastating disease with the worst prognosis among human malignant tumors. Although temozolomide (TMZ) improves the overall survival of glioma patients, there are still many glioma patients who are resistant to TMZ. In this study, we focused on the effect of apigenin (API) and TMZ on glioma cells in vitro and in vivo, and we studied the underlying molecular mechanisms. Materials and Methods: To investigate the effect of API on glioblastoma cell proliferation, cell viability was assessed after glioma cells were incubated with various concentrations of API with or without TMZ using MTT assays. Then, we explored the synergistic effect of API and TMZ on glioma cell cycle, apoptosis, and migration. To investigate the molecular mechanism behind the synergism of API and TMZ, we examined the related genes of the major signaling pathways involved in glioma pathogenesis by Western blotting. Results: In this study, we found that API significantly suppressed the proliferation of glioma cells in a dose- and time-dependent manner. Combining API and TMZ significantly induced glioma cells arrest at the G2 phase and inhibited glioma cells proliferation compared with API or TMZ alone. In addition, API promoted the ability of TMZ to induce glioma cells apoptosis and inhibit glioma cells invasion. Furthermore, compared with treatment with individual agents, the combination of API and TMZ significantly inhibited the growth of subcutaneous tumors in mice. These results implied that API could synergistically suppress the growth of glioma cells when combined with TMZ. Combining API and TMZ significantly inhibited the protein expression of p-AKT, cyclin D1, Bcl-2, Matrix Metallopeptidase 2, and Matrix Metallopeptidase 9. Conclusion: API and TMZ synergistically inhibited glioma growth through the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Dong Wang
- Department of Neurosurgery, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhijun Wang
- Clinical Medicine, Weifang Medical University, Weifang, People's Republic of China
| | - Xuedong Dai
- Department of Neurosurgery, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Liang Zhang
- Department of Neurosurgery, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| | - Min Li
- Department of Neurosurgery, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Chu YD, Chen CW, Lai MW, Lim SN, Lin WR. Bioenergetic alteration in gastrointestinal cancers: The good, the bad and the ugly. World J Gastroenterol 2023; 29:4499-4527. [PMID: 37621758 PMCID: PMC10445009 DOI: 10.3748/wjg.v29.i29.4499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023] Open
Abstract
Cancer cells exhibit metabolic reprogramming and bioenergetic alteration, utilizing glucose fermentation for energy production, known as the Warburg effect. However, there are a lack of comprehensive reviews summarizing the metabolic reprogramming, bioenergetic alteration, and their oncogenetic links in gastrointestinal (GI) cancers. Furthermore, the efficacy and treatment potential of emerging anticancer drugs targeting these alterations in GI cancers require further evaluation. This review highlights the interplay between aerobic glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS) in cancer cells, as well as hypotheses on the molecular mechanisms that trigger this alteration. The role of hypoxia-inducible transcription factors, tumor suppressors, and the oncogenetic link between hypoxia-related enzymes, bioenergetic changes, and GI cancer are also discussed. This review emphasizes the potential of targeting bioenergetic regulators for anti-cancer therapy, particularly for GI cancers. Emphasizing the potential of targeting bioenergetic regulators for GI cancer therapy, the review categorizes these regulators into aerobic glycolysis/ lactate biosynthesis/transportation and TCA cycle/coupled OXPHOS. We also detail various anti-cancer drugs and strategies that have produced pre-clinical and/or clinical evidence in treating GI cancers, as well as the challenges posed by these drugs. Here we highlight that understanding dysregulated cancer cell bioenergetics is critical for effective treatments, although the diverse metabolic patterns present challenges for targeted therapies. Further research is needed to comprehend the specific mechanisms of inhibiting bioenergetic enzymes, address side effects, and leverage high-throughput multi-omics and spatial omics to gain insights into cancer cell heterogeneity for targeted bioenergetic therapies.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chun-Wei Chen
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ming-Wei Lai
- Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Siew-Na Lim
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Wey-Ran Lin
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
4
|
The Potential Role of Apigenin in Cancer Prevention and Treatment. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186051. [PMID: 36144783 PMCID: PMC9505045 DOI: 10.3390/molecules27186051] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022]
Abstract
Cancer is the leading cause of death worldwide. In spite of advances in the treatment of cancer, currently used treatment modules including chemotherapy, hormone therapy, radiation therapy and targeted therapy causes adverse effects and kills the normal cells. Therefore, the goal of more effective and less side effects-based cancer treatment approaches is still at the primary position of present research. Medicinal plants or their bioactive ingredients act as dynamic sources of drugs due to their having less side effects and also shows the role in reduction of resistance against cancer therapy. Apigenin is an edible plant-derived flavonoid that has received significant scientific consideration for its health-promoting potential through modulation of inflammation, oxidative stress and various other biological activities. Moreover, the anti-cancer potential of apigenin is confirmed through its ability to modulate various cell signalling pathways, including tumor suppressor genes, angiogenesis, apoptosis, cell cycle, inflammation, apoptosis, PI3K/AKT, NF-κB, MAPK/ERK and STAT3 pathways. The current review mainly emphases the potential role of apigenin in different types of cancer through the modulation of various cell signaling pathways. Further studies based on clinical trials are needed to explore the role of apigenin in cancer management and explain the possible potential mechanisms of action in this vista.
Collapse
|
5
|
Abid R, Ghazanfar S, Farid A, Sulaman SM, Idrees M, Amen RA, Muzammal M, Shahzad MK, Mohamed MO, Khaled AA, Safir W, Ghori I, Elasbali AM, Alharbi B. Pharmacological Properties of 4', 5, 7-Trihydroxyflavone (Apigenin) and Its Impact on Cell Signaling Pathways. Molecules 2022; 27:4304. [PMID: 35807549 PMCID: PMC9267958 DOI: 10.3390/molecules27134304] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022] Open
Abstract
Plant bioactive compounds, particularly apigenin, have therapeutic potential and functional activities that aid in the prevention of infectious diseases in many mammalian bodies and promote tumor growth inhibition. Apigenin is a flavonoid with low toxicities and numerous bioactive properties due to which it has been considered as a traditional medicine for decades. Apigenin shows synergistic effects in combined treatment with sorafenib in the HepG2 human cell line (HCC) in less time and statistically reduces the viability of tumor cells, migration, gene expression and apoptosis. The combination of anti-cancerous drugs with apigenin has shown health promoting potential against various cancers. It can prevent cell mobility, maintain the cell cycle and stimulate the immune system. Apigenin also suppresses mTOR activity and raises the UVB-induced phagocytosis and reduces the cancerous cell proliferation and growth. It also has a high safety threshold, and active (anti-cancer) doses can be gained by consuming a vegetable and apigenin rich diet. Apigenin also boosted autophagosome formation, decreased cell proliferation and activated autophagy by preventing the activity of the PI3K pathway, specifically in HepG2 cells. This paper provides an updated overview of apigenin's beneficial anti-inflammatory, antibacterial, antiviral, and anticancer effects, making it a step in the right direction for therapeutics. This study also critically analyzed the effect of apigenin on cancer cell signaling pathways including the PI3K/AKT/MTOR, JAK/STAT, NF-κB and ERK/MAPK pathways.
Collapse
Affiliation(s)
- Rameesha Abid
- Department of Biotechnology, University of Sialkot, Sialkot 51310, Pakistan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center, Islamabad 44100, Pakistan; (S.G.); (M.I.)
| | - Shakira Ghazanfar
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center, Islamabad 44100, Pakistan; (S.G.); (M.I.)
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan;
| | | | - Maryam Idrees
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center, Islamabad 44100, Pakistan; (S.G.); (M.I.)
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Muhammad Muzammal
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan;
| | - Muhammad Khurram Shahzad
- Biotechnology and Bioinformatics Department, International Islamic University, Islamabad 44100, Pakistan;
| | | | | | - Waqas Safir
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China;
| | - Ifra Ghori
- Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi 46000, Pakistan;
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka 72388, Saudi Arabia
| | - Bandar Alharbi
- Department of Medical Laboratory, College of Applied Medical Science, University of Hail, Hail 81481, Saudi Arabia;
| |
Collapse
|
6
|
The effect of apigenin and chemotherapy combination treatments on apoptosis-related genes and proteins in acute leukaemia cell lines. Sci Rep 2022; 12:8858. [PMID: 35614109 PMCID: PMC9132959 DOI: 10.1038/s41598-022-11441-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/30/2022] [Indexed: 12/30/2022] Open
Abstract
Apigenin is a dietary polyphenol found abundantly in fruit and vegetables, which sensitizes leukaemia cells to topoisomerase inhibitor agents (e.g., etoposide), and alkylating agents (e.g., cyclophosphamide), reducing ATP levels and inducing apoptosis; whilst being protective to control haematopoietic stem cells. This study analysed the expression profiles of intrinsic and extrinsic apoptosis-related genes and proteins to help elucidate the mechanisms of action of apigenin when used in combination with etoposide or cyclophosphamide in lymphoid and myeloid leukaemia cell lines (Jurkat and THP-1). Expression of apoptosis-related genes were measured using a TaqMan® Human Apoptosis Array and the StepOne Plus RT-qPCR System, whilst apoptosis-related proteins were determined using a protein profiler™-human apoptosis array and the LI-COR OdysseyR Infrared Imaging System. Apigenin when combined with etoposide or cyclophosphamide-induced apoptosis via the mitochondrial pathway, increasing the expression of pro-apoptotic cytochrome c, SMAC/DIABLO, and HTRA2/OMI, which promoted caspase-9 and -3 activation. Targeting anti-apoptotic and/or pro-apoptotic members of the apoptotic pathways is a promising strategy to induce cancer cell death and improve sensitivity to chemotherapy agents. Here the apoptotic pathways induced by apigenin in combination with etoposide or cyclophosphamide were identified within human leukaemia cell lines, such applications could provide combination therapies for the treatment of leukaemia.
Collapse
|
7
|
Behuria HG, Dash S, Sahu SK. Phospholipid Scramblases: Role in Cancer Progression and Anticancer Therapeutics. Front Genet 2022; 13:875894. [PMID: 35422844 PMCID: PMC9002267 DOI: 10.3389/fgene.2022.875894] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Phospholipid scramblases (PLSCRs) that catalyze rapid mixing of plasma membrane lipids result in surface exposure of phosphatidyl serine (PS), a lipid normally residing to the inner plasma membrane leaflet. PS exposure provides a chemotactic eat-me signal for phagocytes resulting in non-inflammatory clearance of apoptotic cells by efferocytosis. However, metastatic tumor cells escape efferocytosis through alteration of tumor microenvironment and apoptotic signaling. Tumor cells exhibit altered membrane features, high constitutive PS exposure, low drug permeability and increased multidrug resistance through clonal evolution. PLSCRs are transcriptionally up-regulated in tumor cells leading to plasma membrane remodeling and aberrant PS exposure on cell surface. In addition, PLSCRs interact with multiple cellular components to modulate cancer progression and survival. While PLSCRs and PS exposed on tumor cells are novel drug targets, many exogenous molecules that catalyze lipid scrambling on tumor plasma membrane are potent anticancer therapeutic molecules. In this review, we provide a comprehensive analysis of scramblase mediated signaling events, membrane alteration specific to tumor development and possible therapeutic implications of scramblases and PS exposure.
Collapse
Affiliation(s)
- Himadri Gourav Behuria
- Laboratory of Molecular Membrane Biology, Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University, Baripada, India
| | - Sabyasachi Dash
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Santosh Kumar Sahu
- Laboratory of Molecular Membrane Biology, Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University, Baripada, India
| |
Collapse
|
8
|
Jittapalapong S, Poompoung T, Sutjarit S. Apigenin induces oxidative stress in mouse Sertoli TM4 cells. Vet World 2021; 14:3132-3137. [PMID: 35153403 PMCID: PMC8829396 DOI: 10.14202/vetworld.2021.3132-3137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/02/2021] [Indexed: 11/24/2022] Open
Abstract
Background and Aim: Apigenin (API) is an estrogenic compound found in many plants. Sertoli cells reside in the testis and are a key target of environmental toxicants. This study aimed to examine the cytotoxicity, especially oxidative stress of API in mouse Sertoli TM4 cells. Materials and Methods: Mouse Sertoli TM4 cells were treated with 50 and 100 μM API for 48 h. Cell viability, lactate dehydrogenase (LDH) activities, glutathione reductase (GR) activities, production of reactive oxygen species (ROS), and malondialdehyde (MDA) levels were evaluated using various assays. Results: Treatment with API at both 50 and 100 μM decreased viability and GR activity but increased LDH activity, ROS production, and MDA levels in mouse Sertoli TM4 cells. Conclusion: Exposure to API induced oxidative stress in mouse Sertoli TM4 cells.
Collapse
Affiliation(s)
- Sathaporn Jittapalapong
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Thapanee Poompoung
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Samak Sutjarit
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
9
|
Desmet NM, Dhusia K, Qi W, Doseff AI, Bhattacharya S, Gilad AA. Bioengineering of Genetically Encoded Gene Promoter Repressed by the Flavonoid Apigenin for Constructing Intracellular Sensor for Molecular Events. BIOSENSORS-BASEL 2021; 11:bios11050137. [PMID: 33924783 PMCID: PMC8147076 DOI: 10.3390/bios11050137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022]
Abstract
In recent years, Synthetic Biology has emerged as a new discipline where functions that were traditionally performed by electronic devices are replaced by "cellular devices"; genetically encoded circuits constructed of DNA that are built from biological parts (aka bio-parts). The cellular devices can be used for sensing and responding to natural and artificial signals. However, a major challenge in the field is that the crosstalk between many cellular signaling pathways use the same signaling endogenous molecules that can result in undesired activation. To overcome this problem, we utilized a specific promoter that can activate genes with a natural, non-toxic ligand at a highly-induced transcription level with low background or undesirable off-target expression. Here we used the orphan aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor that upon activation binds to specific AHR response elements (AHRE) of the Cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) promoter. Flavonoids have been identified as AHR ligands. Data presented here show the successful creation of a synthetic gene "off" switch that can be monitored directly using an optical reporter gene. This is the first step towards bioengineering of a synthetic, nanoscale bio-part for constructing a sensor for molecular events.
Collapse
Affiliation(s)
- Nicole M. Desmet
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA; (N.M.D.); (K.D.); (W.Q.); (S.B.)
- Division of Synthetic Biology and Regenerative Medicine, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Kalyani Dhusia
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA; (N.M.D.); (K.D.); (W.Q.); (S.B.)
| | - Wenjie Qi
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA; (N.M.D.); (K.D.); (W.Q.); (S.B.)
| | - Andrea I. Doseff
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA;
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Sudin Bhattacharya
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA; (N.M.D.); (K.D.); (W.Q.); (S.B.)
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Assaf A. Gilad
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA; (N.M.D.); (K.D.); (W.Q.); (S.B.)
- Division of Synthetic Biology and Regenerative Medicine, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
- Correspondence:
| |
Collapse
|
10
|
Zhao Z, Wu X, He F, Xiang C, Feng X, Bai X, Liu X, Zhao J, Takeda S, Qing Y. Critical roles of Rad54 in tolerance to apigenin-induced Top1-mediated DNA damage. Exp Ther Med 2021; 21:505. [PMID: 33791014 DOI: 10.3892/etm.2021.9936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 07/07/2020] [Indexed: 02/05/2023] Open
Abstract
Apigenin (APG), a flavone sub-class of flavonoids, possesses a diverse range of biological activities, including anti-cancer and anti-inflammatory effects. Previous studies identified the genotoxicity of APG in certain cancer cells, which may be associated with its anticancer effect. However, the DNA damage repair mechanism induced by APG has remained elusive. In order to clarify the molecular mechanisms, the present study determined the toxicity of APG to the wild-type (WT) DT40 chicken B-lymphocyte cell line, as well as to DT40 cells with deletions in various DNA repair genes, and their sensitivities were compared. It was demonstrated that cells deficient of Rad54, a critical homologous recombination gene, were particularly sensitive to APG. Cell-cycle analysis demonstrated that APG caused an increase in the G2/M-phase population of Rad54- / - cells that was greater than that in WT cells. Furthermore, it was demonstrated by immunofluorescence assay that Rad54- / - cells exhibited significantly increased numbers of γ-phosphorylated H2AX variant histone foci and chromosomal aberrations compared to the WT cells in response to APG. Of note, the in vitro complex of enzyme assay indicated that APG induced increased topoisomerase I (Top1) covalent protein DNA complex in Rad54- / - cells compared to WT cells. Finally, these results were verified using the TK6 human lymphoblastoid cell line and it was demonstrated that, as for DT40 cells, Rad54 deficiency sensitized TK6 cells to APG. The present study demonstrated that Rad54 was involved in the repair of APG-induced DNA damage, which was associated with Top1 inhibition.
Collapse
Affiliation(s)
- Zilu Zhao
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaohua Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fang He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Cuifang Xiang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaoyu Feng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin Bai
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin Liu
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jingxia Zhao
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yong Qing
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery Systems of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
11
|
Ahmed SA, Parama D, Daimari E, Girisa S, Banik K, Harsha C, Dutta U, Kunnumakkara AB. Rationalizing the therapeutic potential of apigenin against cancer. Life Sci 2020; 267:118814. [PMID: 33333052 DOI: 10.1016/j.lfs.2020.118814] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Despite the remarkable advances made in the diagnosis and treatment of cancer during the past couple of decades, it remains the second largest cause of mortality in the world, killing approximately 9.6 million people annually. The major challenges in the treatment of the advanced stage of this disease are the development of chemoresistance, severe adverse effects of the drugs, and high treatment cost. Therefore, the development of drugs that are safe, efficacious, and cost-effective remains a 'Holy Grail' in cancer research. However, the research over the past four decades shed light on the cancer-preventive and therapeutic potential of natural products and their underlying mechanism of action. Apigenin is one such compound, which is known to be safe and has significant potential in the prevention and therapy of this disease. AIM To assess the literature available on the potential of apigenin and its analogs in modulating the key molecular targets leading to the prevention and treatment of different types of cancer. METHOD A comprehensive literature search has been carried out on PubMed for obtaining information related to the sources and analogs, chemistry and biosynthesis, physicochemical properties, biological activities, bioavailability and toxicity of apigenin. KEY FINDINGS The literature search resulted in many in vitro, in vivo and a few cohort studies that evidenced the effectiveness of apigenin and its analogs in modulating important molecular targets and signaling pathways such as PI3K/AKT/mTOR, JAK/STAT, NF-κB, MAPK/ERK, Wnt/β-catenin, etc., which play a crucial role in the development and progression of cancer. In addition, apigenin was also shown to inhibit chemoresistance and radioresistance and make cancer cells sensitive to these agents. Reports have further revealed the safety of the compound and the adaptation of nanotechnological approaches for improving its bioavailability. SIGNIFICANCE Hence, the present review recapitulates the properties of apigenin and its pharmacological activities against different types of cancer, which warrant further investigation in clinical settings.
Collapse
Affiliation(s)
- Semim Akhtar Ahmed
- Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University, Pan Bazar, Guwahati, Assam 781001, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Enush Daimari
- Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University, Pan Bazar, Guwahati, Assam 781001, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Uma Dutta
- Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University, Pan Bazar, Guwahati, Assam 781001, India.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
12
|
Apigenin inhibits proliferation of hepatocellular carcinoma cell by upregulation of cleaved caspases-3/8 and downregulation of pSTAT-3/pJAK-1/pJAK-2. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Sokkar HH, Abo Dena AS, Mahana NA, Badr A. Artichoke extracts in cancer therapy: do the extraction conditions affect the anticancer activity? FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Artichoke is an edible plant that is grown in the Mediterranean region and is known for its antimicrobial, antifungal, antibacterial, antioxidant and anticancer activities. Different artichoke extraction methods can impressively affect the nature as well as the yield of the extracted components.
Main body
The different methods of artichoke extraction and the influence of the extraction conditions on the extraction efficiency are summarized herein. In addition, cancer causalities and hallmarks together with the molecular mechanisms of artichoke active molecules in cancer treatment are also discussed. Moreover, a short background is given on the common types of cancer that can be treated with artichoke extracts as well as their pathogenesis. A brief discussion of the previous works devoted to the application of artichoke extracts in the treatment of these cancers is also given.
Conclusion
This review article covers the extraction methods, composition, utilization and applications of artichoke extracts in the treatment of different cancers.
Collapse
|
14
|
Apigenin restores impairment of autophagy and downregulation of unfolded protein response regulatory proteins in keratinocytes exposed to ultraviolet B radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 194:84-95. [PMID: 30933875 DOI: 10.1016/j.jphotobiol.2019.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/30/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
Ultraviolet (UV)-B radiation is a major environmental risk factor that is responsible for the development and progression of many skin cancers. Apigenin, a type of bioflavonoid, has been reported to inhibit UVB-induced skin cancer. However, how apigenin functions in keratinocytes with UV damage remains unclear. In this study, by lactate dehydrogenase (LDH) release assay, we found that apigenin treatment increased cell death in the primary human epidermal keratinocytes (HEKs) and the cutaneous squamous cell carcinoma cell line COLO-16. Apigenin treatment reduced microtubule-associated protein 1 light chain 3 (LC3)-II turnover, acridine orange staining and GFP-LC3 puncta in both cell types, suggesting autophagy inhibition. However, apigenin treatment restored the inhibition of autophagy in UVB-challenged HEKs. Moreover, apigenin treatment restored the UVB-induced downregulation of ataxia-telangiectasia mutated (ATM), ataxia-telangiectasia, Rad3-related (ATR) and the unfolded protein response (UPR) regulatory proteins, BiP, IRE1α and PERK in HEKs. Apigenin treatment also inhibited UVB-induced apoptosis and cell death in HEKs. In addition, autophagy inhibition by autophagy-related gene (ATG) 5 RNA interference interrupted apigenin-induced restoration of ATR, ATM and BiP, which were downregulated in HEKs exposed to UVB radiation. Our findings indicate that apigenin exhibits a novel protective effect in keratinocytes with UVB damage, suggesting potential application as a photoprotective agent.
Collapse
|