1
|
Alalawy AI. Key genes and molecular mechanisms related to Paclitaxel Resistance. Cancer Cell Int 2024; 24:244. [PMID: 39003454 PMCID: PMC11245874 DOI: 10.1186/s12935-024-03415-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/22/2024] [Indexed: 07/15/2024] Open
Abstract
Paclitaxel is commonly used to treat breast, ovarian, lung, esophageal, gastric, pancreatic cancer, and neck cancer cells. Cancer recurrence is observed in patients treated with paclitaxel due to paclitaxel resistance emergence. Resistant mechanisms are observed in cancer cells treated with paclitaxel, docetaxel, and cabazitaxel including changes in the target molecule β-tubulin of mitosis, molecular mechanisms that activate efflux drug out of the cells, and alterations in regulatory proteins of apoptosis. This review discusses new molecular mechanisms of taxane resistance, such as overexpression of genes like the multidrug resistance genes and EDIL3, ABCB1, MRP1, and TRAG-3/CSAG2 genes. Moreover, significant lncRNAs are detected in paclitaxel resistance, such as lncRNA H19 and cross-resistance between taxanes. This review contributed to discovering new treatment strategies for taxane resistance and increasing the responsiveness of cancer cells toward chemotherapeutic drugs.
Collapse
Affiliation(s)
- Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| |
Collapse
|
2
|
Hashemi M, Zandieh MA, Talebi Y, Rahmanian P, Shafiee SS, Nejad MM, Babaei R, Sadi FH, Rajabi R, Abkenar ZO, Rezaei S, Ren J, Nabavi N, Khorrami R, Rashidi M, Hushmandi K, Entezari M, Taheriazam A. Paclitaxel and docetaxel resistance in prostate cancer: Molecular mechanisms and possible therapeutic strategies. Biomed Pharmacother 2023; 160:114392. [PMID: 36804123 DOI: 10.1016/j.biopha.2023.114392] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/24/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Prostate cancer is among most malignant tumors around the world and this urological tumor can be developed as result of genomic mutations and their accumulation during progression towards advanced stage. Due to lack of specific symptoms in early stages of prostate cancer, most cancer patients are diagnosed in advanced stages that tumor cells display low response to chemotherapy. Furthermore, genomic mutations in prostate cancer enhance the aggressiveness of tumor cells. Docetaxel and paclitaxel are suggested as well-known compounds for chemotherapy of prostate tumor and they possess a similar function in cancer therapy that is based on inhibiting depolymerization of microtubules, impairing balance of microtubules and subsequent delay in cell cycle progression. The aim of current review is to highlight mechanisms of paclitaxel and docetaxel resistance in prostate cancer. When oncogenic factors such as CD133 display upregulation and PTEN as tumor-suppressor shows decrease in expression, malignancy of prostate tumor cells enhances and they can induce drug resistance. Furthermore, phytochemicals as anti-tumor compounds have been utilized in suppressing chemoresistance in prostate cancer. Naringenin and lovastatin are among the anti-tumor compounds that have been used for impairing progression of prostate tumor and enhancing drug sensitivity. Moreover, nanostructures such as polymeric micelles and nanobubbles have been utilized in delivery of anti-tumor compounds and decreasing risk of chemoresistance development. These subjects are highlighted in current review to provide new insight for reversing drug resistance in prostate cancer.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Yasmin Talebi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sareh Sadat Shafiee
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Melina Maghsodlou Nejad
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Roghayeh Babaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Farzaneh Hasani Sadi
- General Practitioner, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Tang S, Ling Z, Jiang J, Gu X, Leng Y, Wei C, Cheng H, Li X. Integrating the tumor-suppressive activity of Maspin with p53 in retuning the epithelial homeostasis: A working hypothesis and applicable prospects. Front Oncol 2022; 12:1037794. [PMID: 36523976 PMCID: PMC9745138 DOI: 10.3389/fonc.2022.1037794] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/10/2022] [Indexed: 12/20/2024] Open
Abstract
Epithelial malignant transformation and tumorous development were believed to be closely associated with the loss of its microenvironment integrity and homeostasis. The tumor-suppressive molecules Maspin and p53 were demonstrated to play a crucial role in body epithelial and immune homeostasis. Downregulation of Maspin and mutation of p53 were frequently associated with malignant transformation and poor prognosis in various human cancers. In this review, we focused on summarizing the progress of the molecular network of Maspin in studying epithelial tumorous development and its response to clinic treatment and try to clarify the underlying antitumor mechanism. Notably, Maspin expression was reported to be transcriptionally activated by p53, and the transcriptional activity of p53 was demonstrated to be enhanced by its acetylation through inhibition of HDAC1. As an endogenous inhibitor of HDAC1, Maspin possibly potentiates the transcriptional activity of p53 by acetylating the p53 protein. Hereby, it could form a "self-propelling" antitumor mechanism. Thus, we summarized that, upon stimulation of cellular stress and by integrating with p53, the aroused Maspin played the epigenetic surveillant role to prevent the epithelial digressional process and retune the epithelial homeostasis, which is involved in activating host immune surveillance, regulating the inflammatory factors, and fine-tuning its associated cell signaling pathways. Consequentially, in a normal physiological condition, activation of the above "self-propelling" antitumor mechanism of Maspin and p53 could reduce cellular stress (e.g., chronic infection/inflammation, oxidative stress, transformation) effectively and achieve cancer prevention. Meanwhile, designing a strategy of mimicking Maspin's epigenetic regulation activity with integrating p53 tumor-suppressive activity could enhance the chemotherapy efficacy theoretically in a pathological condition of cancer.
Collapse
Affiliation(s)
- Sijie Tang
- Department of Urology, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, China
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, China
| | - Zhongli Ling
- Department of Urology, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, China
| | - Jiajia Jiang
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, China
| | - Xiang Gu
- Department of Urology, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, China
| | - Yuzhong Leng
- Department of Urology, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, China
| | - Chaohui Wei
- Department of Urology, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, China
| | - Huiying Cheng
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, China
| | - Xiaohua Li
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, China
| |
Collapse
|
4
|
Insights into Aptamer-Drug Delivery Systems against Prostate Cancer. Molecules 2022; 27:molecules27113446. [PMID: 35684384 PMCID: PMC9182114 DOI: 10.3390/molecules27113446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Prostate cancer is a common cancer in elderly males. Significant progress has been made in the drug therapies for prostate cancer in recent years. However, side effects are still problems that have not been overcome by the currently used anti-prostate cancer drugs. Novel technologies can be applied to reduce or even eliminate the side effects of drugs. An aptamer may be a sequence of nucleic acids or peptides that can specifically recognize proteins or cells. Taking advantage of this feature, scientists have designed aptamer-drug delivery systems for the development of anti-prostate cancer agents. Theoretically, these aptamer-drug delivery systems can specifically recognize prostate cancer cells and then induce cell death without attacking normal cells. We collected the relevant literature in this field and found that at least nine compounds have been prepared as aptamer-drug delivery systems to evaluate their precise anti-prostate cancer effects. However, the currently studied aptamer-drug delivery systems have not yet entered the market due to defects. Here, we analyze the published data, summarize the characteristics of these delivery systems, and propose ways to promote their application, thus promoting the development of the aptamer-drug delivery systems against prostate cancer.
Collapse
|
5
|
Maloney SM, Hoover CA, Morejon-Lasso LV, Prosperi JR. Mechanisms of Taxane Resistance. Cancers (Basel) 2020; 12:E3323. [PMID: 33182737 PMCID: PMC7697134 DOI: 10.3390/cancers12113323] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
The taxane family of chemotherapy drugs has been used to treat a variety of mostly epithelial-derived tumors and remain the first-line treatment for some cancers. Despite the improved survival time and reduction of tumor size observed in some patients, many have no response to the drugs or develop resistance over time. Taxane resistance is multi-faceted and involves multiple pathways in proliferation, apoptosis, metabolism, and the transport of foreign substances. In this review, we dive deeper into hypothesized resistance mechanisms from research during the last decade, with a focus on the cancer types that use taxanes as first-line treatment but frequently develop resistance to them. Furthermore, we will discuss current clinical inhibitors and those yet to be approved that target key pathways or proteins and aim to reverse resistance in combination with taxanes or individually. Lastly, we will highlight taxane response biomarkers, specific genes with monitored expression and correlated with response to taxanes, mentioning those currently being used and those that should be adopted. The future directions of taxanes involve more personalized approaches to treatment by tailoring drug-inhibitor combinations or alternatives depending on levels of resistance biomarkers. We hope that this review will identify gaps in knowledge surrounding taxane resistance that future research or clinical trials can overcome.
Collapse
Affiliation(s)
- Sara M. Maloney
- Harper Cancer Research Institute, South Bend, IN 46617, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
| | - Camden A. Hoover
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| | - Lorena V. Morejon-Lasso
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| | - Jenifer R. Prosperi
- Harper Cancer Research Institute, South Bend, IN 46617, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| |
Collapse
|
6
|
Sun Q, Zhang K, Li H, Chen W, Liu L, Huang G, Zhang Q, Wang J, Lu L, Chen L, Wang R. The overexpression of maspin increases the sensitivity of lung adenocarcinoma drug-resistant cells to docetaxel in vitro and in vivo. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1522. [PMID: 33313267 PMCID: PMC7729325 DOI: 10.21037/atm-20-7053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background In this study, we found that maspin affects the development of drug resistance in lung adenocarcinoma. Therefore, it is important to clarify the role and mechanism of mammary serine protease inhibitor (maspin) in the regulation of adenocarcinoma drug resistance in order to improve individualized clinical treatment protocols and drug resistance interventions. Methods Immunohistochemical was used to detect maspin expression in tissue chip samples of 75 patients diagnosed with lung adenocarcinoma and treated with a taxus chemotherapy regimen, and the correlation between maspin, clinicopathological factors, and prognosis was analyzed. The expression of maspin in a human lung adenocarcinoma docetaxel-resistant cell line, SPC-A1/DTX, and its parent cells were detected by reverse transcription polymerase chain reaction (RT-PCR) and western blot assay. MTT and flow cytometry were used to detect the effects of knockdown or overexpression of maspin on chemotherapy sensitivity and apoptosis in lung cancer cells. Tumor cells were also analyzed in vivo to determine their tumorigenic ability and susceptibility to docetaxel. Results Maspin is poorly expressed in lung adenocarcinoma tissue chips that have received a taxus chemotherapy regimen, and is also closely related to poor grading, late stage, lymph node metastasis, and poor prognosis. Maspin has a low expression in drug-resistant cells, and the expression level of maspin decreases significantly with increases in docetaxel concentration and over time. In drug-resistant cells, knockdown of maspin can significantly affect the sensitivity of drug-resistant cells to docetaxel. In the chemotherapy-sensitive strain SPC-A1, maspin was mainly located in the cell nucleus, while in the chemotherapy-resistant strain SPC-A1/DTX, maspin was mainly located in the cytoplasm. An in vivo nude mouse xenograft model showed that an overexpression of maspin significantly increased the inhibitory effect of docetaxel on tumor-bearing tissues and the apoptosis rate, and markedly reduced tumor weight, volume, and the Ki-67–positive rate. Conclusions In vitro and in vivo experiments show that overexpression of maspin can increase the sensitivity of lung cancer drug-resistant cells to chemotherapy drugs, suggesting that the expression level of maspin could be used as a molecular marker to predict lung cancer drug resistance to docetaxel.
Collapse
Affiliation(s)
- Qian Sun
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Kai Zhang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Huan Li
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Weiwei Chen
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Leilei Liu
- Department of Pathology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Guichun Huang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qun Zhang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jing Wang
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Lu Lu
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| | - Rui Wang
- Department of Medical Oncology, Jinling Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Guo F, Li J, Qi Y, Hou J, Chen H, Jiang SW. HE4 overexpression decreases pancreatic cancer Capan-1 cell sensitivity to paclitaxel via cell cycle regulation. Cancer Cell Int 2020; 20:163. [PMID: 32435154 PMCID: PMC7218645 DOI: 10.1186/s12935-020-01248-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/07/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Paclitaxel is a first-line chemotherapy drug for pancreatic, ovarian, endometrial cancers and other malignancies. However, its efficacy is often compromised by decreased cell sensitivity or the development of resistance. Human epididymis protein 4 (HE4) is highly expressed in gynecologic and pancreatic cancer tissues, and its serum levels are used for patient triage and assistant diagnosis of gynecologic cancers. Previous studies have shown that HE4 overexpression could promote cancer cell proliferation and the growth of tumor xenografts, which suggests its potential involvement in cancer chemosensitivity. METHODS Two pancreatic cancer cell lines, Capan-1 and Suit-2, were transiently transfected with an HE4 overexpression plasmid, and transfected cells were treated with paclitaxel. S-phase cells were labeled using BrdU, and cell positivity rates were determined by counting BrdU-positive cells. Following HE4 overexpression and/or drug treatment, a western blotting analysis was performed to determine the protein alterations of PCNA and p21, two important cell cycle regulators. RESULTS HE4 overexpression not only promoted the proliferation of the Capan-1 pancreatic cells, but also significantly decreased cell sensitivity to paclitaxel. Results from western blotting showed that paclitaxel inhibited cell proliferation by decreasing the expression of PCNA and increasing the expression of p21. Data analysis indicated interactive actions between HE4 function and paclitaxel effects, both converging to cell cycle regulation. CONCLUSION These findings suggest that HE4 could be a potential therapeutic target for the sensitization of pancreatic cancer cells to paclitaxel treatment. HE4 expression levels may be used to predict the sensitivity of pancreatic cancer patients to paclitaxel.
Collapse
Affiliation(s)
- Fengbiao Guo
- Department of Histology and Embryology, Shantou University Medical College, Shantou, 515041 Guangdong China
- Center of Reproductive Medicine, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214123 Jiangsu China
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404 USA
| | - Jinping Li
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404 USA
- Department of Surgery, Anderson Cancer Center, Memorial Hospital University Medical Center, Savannah, GA 31404 USA
| | - Yaozhi Qi
- Department of Clinical Laboratory, Lianyungang Maternal and Child Health Hospital, Lianyungang, 222005 Jiangsu China
| | - Jianqing Hou
- Department of Obstetrics and Gynecology, Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, 264000 Shandong China
| | - Haibin Chen
- Department of Histology and Embryology, Shantou University Medical College, Shantou, 515041 Guangdong China
| | - Shi-Wen Jiang
- Center of Reproductive Medicine, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214123 Jiangsu China
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA 31404 USA
- Department of Surgery, Anderson Cancer Center, Memorial Hospital University Medical Center, Savannah, GA 31404 USA
| |
Collapse
|
8
|
Chen Q, Wan X, Chen Y, Liu C, Gu M, Wang Z. SGO1 induces proliferation and metastasis of prostate cancer through AKT-mediated signaling pathway. Am J Cancer Res 2019; 9:2693-2705. [PMID: 31911855 PMCID: PMC6943359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/09/2018] [Indexed: 06/10/2023] Open
Abstract
Although studies have revealed some of the pathological causes associated with prostate cancer progression, further studies are still needed. Shugoshin 1 (SGO1) is a protein essential for precise chromosome segregation during mitosis and meiosis. However, the role and mechanism of SGO1 in tumors and even prostate cancer is not completely clear. In this study, expression of SGO1 in human prostate tumors were higher than that of adjacent normal tissues and were positively correlated with the poor prognosis of prostate cancer patients. SGO1 expression levels are also higher in several prostate cancer cell lines. In cell experiments, knockdown of SGO1 reduced cell proliferation, migration, and invasion in vitro and in vivo, and also inhibited cell cycle progression of prostate cancer cells. In contrast, ectopic expression of SGO1 has the opposite effects. In addition, knockdown of SGO1 induces apoptosis in prostate cancer cells by promoting cleaved caspase-3, caspase-9, and PARP. Importantly SGO1 function is dependent on AKT. Inhibition of AKT activity by AKT inhibitor abolished the role of SGO1 overexpression in promoting cell proliferation and metastasis. Therefore, SGO1 promotes the proliferation and metastasis of prostate cancer through the AKT pathway, and can be considered as an effective candidate for developing an effective prostate cancer treatment strategy.
Collapse
Affiliation(s)
- Qi Chen
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Xiang Wan
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Yanbo Chen
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Chong Liu
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Meng Gu
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Zhong Wang
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
9
|
Byun WS, Jin M, Yu J, Kim WK, Song J, Chung HJ, Jeong LS, Lee SK. A novel selenonucleoside suppresses tumor growth by targeting Skp2 degradation in paclitaxel-resistant prostate cancer. Biochem Pharmacol 2018; 158:84-94. [PMID: 30292755 DOI: 10.1016/j.bcp.2018.10.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/02/2018] [Indexed: 01/03/2023]
Abstract
Prostate cancer (PC) is the most common disease in men over age 50, and its prevalence rate has been gradually increasing since 1980. Taxane-derived anticancer agents are the primary agents used to treat metastatic prostate cancer patients; however, the side effects and acquired drug resistance limit the success of these therapies. Because there is no specific treatment for paclitaxel-resistant prostate cancer, it is necessary to develop new targets and therapeutic strategies to overcome the acquired resistance. In this study, the antitumor activity of a novel selenonucleoside (4'-selenofuranosyl-2,6-dichloropurine, LJ-2618), a third-generation nucleoside, and its plausible mechanisms of action in paclitaxel-resistant prostate cancer (PC-3-Pa) cells were investigated. The established PC-3-Pa cells exhibited over 100-fold resistance against paclitaxel compared to the paclitaxel-sensitive PC-3 cells. LJ-2618, however, effectively inhibited the proliferation of both cell lines with similar IC50 values in vitro. In PC-3-Pa cells, the activated PI3K/Akt signaling pathway was suppressed by LJ-2618 treatment. In addition, Skp2 was found to be over-expressed in paclitaxel-resistant cells, and the transfection of Skp2 siRNA recovered the sensitivity of paclitaxel in PC-3-Pa cells. Furthermore, LJ-2618 significantly down-regulated Skp2 expression in PC-3-Pa cells by promoting degradation and inducing destabilization of Skp2, which triggers G2/M cell cycle arrest. In a xenograft mouse model implanted with PC-3-Pa cells, LJ-2618 (3 or 10 mg/kg) effectively inhibited tumor growth with the enhancement of Skp2 degradation and induction of p27 expression in tumor tissues. These findings suggest that LJ-2618 may have potential for overcoming paclitaxel resistance via promoting Skp2 degradation and stabilizing p27 expression in PC-3-Pa cells. Therefore, the novel selenonucleoside LJ-2618 may lead to the development of a new treatment strategy for patients with paclitaxel-resistant, castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Woong Sub Byun
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Minkyung Jin
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinha Yu
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Won Kyung Kim
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Jayoung Song
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Hwa-Jin Chung
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Lak Shin Jeong
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|