1
|
Ehrman RN, Tran N, Trashi I, Trashi O, Howlett TS, Wang Z, Kumari S, Chiev AC, Gassensmith JJ. Optimization of Immunogenic Cell Death in Triple-Negative Breast Cancer with Virus-like Particle-Based Photothermal Therapy. Mol Pharm 2025; 22:1881-1891. [PMID: 40047627 DOI: 10.1021/acs.molpharmaceut.4c01059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
Photothermal therapy (PTT) uses near-infrared (NIR) light and a photothermal agent (PTA) to generate heat to kill tumor cells. PTT is an attractive therapy for highly metastatic tumors─such as triple-negative breast cancer (TNBC)─because PTT is a potent activator of immunogenic cell death (ICD). ICD is characterized by the production of damage-associated molecular patterns (DAMPs) that help the immune system recognize cancer cells as "nonself." This generates an immune response against the tumor cells and helps to combat both primary and metastatic tumors. However, an unknown thermal window remains in which ICD is most prevalent. Here, we conjugate an NIR-absorbing dye to the surface of bacteriophage Qβ to generate a viral-based PTA. Additionally, we demonstrate that mild PTT (<45 °C) is not enough to cause significant apoptosis in the murine TNBC model. In comparison, hot PTT (>60 °C) effectively eliminates cancer cells but is less likely to induce ICD. An optimal temperature range is moderate PTT (50-60 °C), where effective cell killing and ICD occur. We show an increased surface expression of DAMPs within this range, along with an increased ratio of pro- to anti-inflammatory cytokines by dendritic cells.
Collapse
Affiliation(s)
- Ryanne N Ehrman
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Nancy Tran
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Ikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Orikeda Trashi
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Thomas S Howlett
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Ziqi Wang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Sneha Kumari
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Alyssa C Chiev
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
- Department of Biomedical Engineering, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| |
Collapse
|
2
|
Ma Q, Lu X, Tian W, Chen Y, He X. Astragaloside Ⅳ mediates the effect and mechanism of KPNB1 on biological behavior and tumor growth in prostate cancer. Heliyon 2024; 10:e33904. [PMID: 39027542 PMCID: PMC11255569 DOI: 10.1016/j.heliyon.2024.e33904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
Background and purpose Prostate cancer is an comparatively prevalent clinical malignant tumor in men, impacting the lives of millions of men globally. This study measured the expression of Karyopherin Subunit Beta 1 (KPNB1) in prostate cancer cells, and made an effort to investigate how astragaloside IV affects the biological behavior, tumor growth, and mechanism of action of prostate cancer through KPNB1. Methods Human prostate cancer and normal cells were obtained and KPNB1 expression levels in the two cells were determined using qPCR and WB. Prostate cancer cells were grouped according to the addition of astragaloside IV, KPNB1 inhibitor (importazole) alone and in combination. KPNB1, NF-κB, and cycle-related proteins were detected to be expressed at different levels in each group's cells by WB. MTT to assess the viability of the cells. To identify the cell cycle, use flow cytometry, and sphere formation experiment to observe sphere formation ability. Nude mice were purchased and subcutaneously inoculated with prostate cancer cells to establish a prostate cancer model, and grouped by tail vein injection of astragaloside IV and importazole. Tumor size was measured. KPNB1 and NF-κB expression in tumor tissues were detected by WB. The expression of proteins relevant to the cycle is observed by immunohistochemical methods. TUNEL was used to detect apoptosis of tissue cells. Results KPNB1 expression was upregulated in prostate cancer cells (P < 0.05). KPNB1, NF-κB, and cycle-related protein levels were decreased by astragaloside IV and importazole both separately and together. Decreased viability of the cells and a higher percentage of cell cycle arrest in the G0 phase, apoptosis was increased, and sphere formation was decreased (P < 0.05). In vitro implantation experiments found that the application of astragaloside IV and importazole resulted in tumor growth inhibition, decreased KPNBI, NF-κB, and cyclin expression in tumor tissues, and promoted apoptosis in tumor tissues (P < 0.05). Conclusion Prostate cancer cells' expression of KPNB1 is downregulated by astragaloside IV, which also prevents the cells from proliferating. It offers a conceptual framework for the use of astragaloside IV in the management of prostate cancer.
Collapse
Affiliation(s)
- Quan Ma
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Xiaojun Lu
- Department of Urology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200000, China
| | - Wei Tian
- Department of Urology, Shaoxing Central Hospital, Shaoxing, 312000, Zhejiang, China
| | - Yongliang Chen
- Department of Urology, Shaoxing Central Hospital, Shaoxing, 312000, Zhejiang, China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| |
Collapse
|
3
|
Wen Y, Song N, Peng Y, Wu W, Lin Q, Cui M, Li R, Yu Q, Wu S, Liang Y, Tian W, Meng Y. Radiofrequency enhances drug release from responsive nanoflowers for hepatocellular carcinoma therapy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:569-579. [PMID: 38887527 PMCID: PMC11181167 DOI: 10.3762/bjnano.15.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/29/2024] [Indexed: 06/20/2024]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common malignant tumor and the third leading cause of cancer death worldwide. Most patients are diagnosed at an advanced stage, and systemic chemotherapy is the preferred treatment modality for advanced HCC. Curcumin (CUR) is a polyphenolic antineoplastic drug with low toxicity obtained from plants. However, its low bioavailability and poor solubility limit its functionality. In this study, radiofrequency- (RF) enhanced responsive nanoflowers (NFs), containing superparamagnetic ferric oxide nanoclusters (Fe3O4 NCs), - CUR layer, - and MnO2 (CUR-Fe@MnO2 NFs), were verified to have a thermal therapeutic effect. Transmission electron microscopy was used to characterize the CUR-Fe@MnO2 NFs, which appeared flower-like with a size of 96.27 nm. The in vitro experimental data showed that RF enhanced the degradation of CUR-Fe@MnO2 NFs to release Mn2+ and CUR. The cytotoxicity test results indicated that after RF heating, the CUR-Fe@MnO2 NFs significantly suppressed HCC cell proliferation. Moreover, CUR-Fe@MnO2 NFs were effective T 1/T 2 contrast agents for molecular magnetic resonance imaging due to the release of Mn2+ and Fe3O4 NCs.
Collapse
Affiliation(s)
- Yanyan Wen
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Ningning Song
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Yueyou Peng
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Weiwei Wu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qixiong Lin
- The Ninth Clinical Medical School of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Minjie Cui
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Rongrong Li
- College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Qiufeng Yu
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
- Department of Medical Imaging, Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Sixue Wu
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yongkang Liang
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
- Department of Medical Imaging, Changzhi Medical College, Changzhi, Shanxi, 046000, China
| | - Wei Tian
- Department of General Surgery, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, China
| | - Yanfeng Meng
- Department of Radiology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| |
Collapse
|
4
|
Liu J, Zhang G, Li X, Zheng C, Kan X. Enhancing the therapeutic impact of sublethal radiofrequency hyperthermia in malignant solid tumor treatment. Heliyon 2024; 10:e29866. [PMID: 38681568 PMCID: PMC11053292 DOI: 10.1016/j.heliyon.2024.e29866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Radiofrequency ablation (RFA) is an effective alternative to surgery for managing some malignant solid tumors. However, for medium-to-large tumors (>3 cm), tumors adjacent to large blood vessels, and certain irregular tumors, sublethal radiofrequency hyperthermia (RFH) often produces a margin of ablated tumor owing to the "heat-sink" effect. This effect typically leaves behind viable residual tumors at the margin. Several studies have reported that a sublethal RFH can significantly enhance the efficacy of chemotherapy, radiotherapy, immunotherapy, and gene therapy for malignant solid tumors. The possible mechanisms by which RFH enhances these therapies include heat-induced tissue fracturing, increased permeability of the cytoplasmic membrane, exaggerated cellular metabolism, blockade of the repair pathways of radiation-damaged tumor cells, and activation of the heat shock protein pathways. Therefore, RFA in combination with chemotherapy, radiotherapy, immunotherapy, or gene therapy may help reduce the rates of residual and recurrent tumors after RFA of malignant solid tumors.
Collapse
Affiliation(s)
- Jiayun Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Guilin Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xinyi Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xuefeng Kan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| |
Collapse
|
5
|
Molza AE, Gao P, Jakpou J, Nicolas J, Tsapis N, Ha-Duong T. Simulations of the Upper Critical Solution Temperature Behavior of Poly(ornithine- co-citrulline)s Using MARTINI-Based Coarse-Grained Force Fields. J Chem Theory Comput 2021; 17:4499-4511. [PMID: 34101464 DOI: 10.1021/acs.jctc.1c00140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(ornithine-co-citrulline)s are ureido-based polymers, which were shown to exhibit tunable upper critical solution temperature (UCST) behavior, a property that can be exploited to develop thermoresponsive nanoparticles for controlled drug delivery systems. To gain insight into the driving forces that govern the formation and dissolution processes of poly(ornithine-co-citrulline) nanoparticles, a molecular dynamics (MD) simulation study has been carried out using MARTINI-based protein coarse-grained models. Multi-microsecond simulations at temperatures ranging from 280 to 370 K show that the fully reparametrized version 3.0 of MARTINI force field is able to capture the dependence on temperature of poly(ornithine-co-citrulline) aggregation and dissolution, while version 2.2 could not account for it. Furthermore, the phase separation observed in these simulations allowed us to extrapolate a phase diagram based on the Flory-Huggins theory of polymer solution, which could help in future rational design of drug delivery nanoparticles based on poly(amino acid)s.
Collapse
Affiliation(s)
| | - Ping Gao
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France.,Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Justine Jakpou
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Nicolas Tsapis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Tâp Ha-Duong
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| |
Collapse
|