1
|
Maqoud F, Zizzo N, Attimonelli M, Tinelli A, Passantino G, Antonacci M, Ranieri G, Tricarico D. Immunohistochemical, pharmacovigilance, and omics analyses reveal the involvement of ATP-sensitive K + channel subunits in cancers: role in drug-disease interactions. Front Pharmacol 2023; 14:1115543. [PMID: 37180726 PMCID: PMC10167295 DOI: 10.3389/fphar.2023.1115543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Background: ATP-sensitive-K+ channels (KATP) are involved in diseases, but their role in cancer is poorly described. Pituitary macroadenoma has been observed in Cantu' syndrome (C.S.), which is associated with the gain-of-function mutations of the ABCC9 and KCNJ8 genes. We tested the role of the ABCC8/Sur1, ABCC9/Sur2A/B, KCNJ11/Kir6.2, and KCNJ8/Kir6.1 genes experimentally in a minoxidil-induced renal tumor in male rats and in the female canine breast cancer, a spontaneous animal model of disease, and in the pharmacovigilance and omics databases. Methods: We performed biopsies from renal tissues of male rats (N = 5) following a sub-chronic high dosing topical administration of minoxidil (0.777-77.7 mg/kg/day) and from breast tissues of female dogs for diagnosis (N = 23) that were analyzed by immunohistochemistry. Pharmacovigilance and omics data were extracted from EudraVigilance and omics databases, respectively. Results: An elevated immunohistochemical reactivity to Sur2A-mAb was detected in the cytosol of the Ki67+/G3 cells other than in the surface membrane in the minoxidil-induced renal tumor and the breast tumor samples. KCNJ11, KCNJ8, and ABCC9 genes are upregulated in cancers but ABCC8 is downregulated. The Kir6.2-Sur2A/B-channel opener minoxidil showed 23 case reports of breast cancer and one case of ovarian cancer in line with omics data reporting, respectively, and the negative and positive prognostic roles of the ABCC9 gene in these cancers. Sulfonylureas and glinides blocking the pancreatic Kir6.2-Sur1 subunits showed a higher risk for pancreatic cancer in line with the positive prognostic role of the ABCC8 gene but low risks for common cancers. Glibenclamide, repaglinide, and glimepiride show a lower cancer risk within the KATP channel blockers. The Kir6.2-Sur1 opener diazoxide shows no cancer reactions. Conclusion: An elevated expression of the Sur2A subunit was found in proliferating cells in two animal models of cancer. Immunohistochemistry/omics/pharmacovigilance data reveal the role of the Kir6.1/2-Sur2A/B subunits as a drug target in breast/renal cancers and in C.S.
Collapse
Affiliation(s)
- Fatima Maqoud
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology Saverio de Bellis, I.R.C.C.S. Research Hospital, Milan, Italy
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Nicola Zizzo
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Italy
| | - Marcella Attimonelli
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University "Aldo Moro" Bari, Bari, Italy
| | - Antonella Tinelli
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Italy
| | - Giuseppe Passantino
- Section of Veterinary Pathology and Comparative Oncology, Department of Veterinary Medicine, University of Bari "Aldo Moro", Valenzano, Italy
| | - Marina Antonacci
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Girolamo Ranieri
- Department of Interventional Radiology and Integrated Medical Oncology, I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
2
|
Zúñiga L, Cayo A, González W, Vilos C, Zúñiga R. Potassium Channels as a Target for Cancer Therapy: Current Perspectives. Onco Targets Ther 2022; 15:783-797. [PMID: 35899081 PMCID: PMC9309325 DOI: 10.2147/ott.s326614] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/08/2022] [Indexed: 12/18/2022] Open
Abstract
Potassium (K+) channels are highly regulated membrane proteins that control the potassium ion flux and respond to different cellular stimuli. These ion channels are grouped into three major families, Kv (voltage-gated K+ channel), Kir (inwardly rectifying K+ channel) and K2P (two-pore K+ channels), according to the structure, to mediate the K+ currents. In cancer, alterations in K+ channel function can promote the acquisition of the so-called hallmarks of cancer – cell proliferation, resistance to apoptosis, metabolic changes, angiogenesis, and migratory capabilities – emerging as targets for the development of new therapeutic drugs. In this review, we focus our attention on the different K+ channels associated with the most relevant and prevalent cancer types. We summarize our knowledge about the potassium channels structure and function, their cancer dysregulated expression and discuss the K+ channels modulator and the strategies for designing new drugs.
Collapse
Affiliation(s)
- Leandro Zúñiga
- Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile.,Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Angel Cayo
- Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile.,Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - Wendy González
- Centro de Bioinformática y Simulación Molecular, Universidad de Talca, Talca, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Talca, Chile
| | - Cristian Vilos
- Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Escuela de Medicina, Universidad de Talca, Talca, Chile.,Laboratory of Nanomedicine and Targeted Delivery, School of Medicine, Universidad de Talca, Talca, 3460000, Chile.,Center for The Development of Nanoscience & Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, 8350709, Chile
| | - Rafael Zúñiga
- Laboratorio de Fisiología Molecular, Escuela de Medicina, Universidad de Talca, Talca, Chile.,Centro de Nanomedicina, Diagnóstico y Desarrollo de Fármacos (ND3), Escuela de Medicina, Universidad de Talca, Talca, Chile
| |
Collapse
|
3
|
Anti-invasive effects of minoxidil on human breast cancer cells: combination with ranolazine. Clin Exp Metastasis 2022; 39:679-689. [PMID: 35643818 PMCID: PMC9338910 DOI: 10.1007/s10585-022-10166-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/11/2022] [Indexed: 12/11/2022]
Abstract
A plethora of ion channels have been shown to be involved systemically in the pathophysiology of cancer and ion channel blockers can produce anti-metastatic effects. However, although ion channels are known to frequently function in concerted action, little is known about possible combined effects of ion channel modulators on metastatic cell behaviour. Here, we investigated functional consequences of pharmacologically modulating ATP-gated potassium (KATP) channel and voltage-gated sodium channel (VGSC) activities individually and in combination. Two triple-negative human breast cancer cell lines were used: MDA-MB-231 and MDA-MB-468, the latter mainly for comparison. Most experiments were carried out on hypoxic cells. Electrophysiological effects were studied by whole-cell patch clamp recording. Minoxidil (a KATP channel opener) and ranolazine (a blocker of the VGSC persistent current) had no effect on cell viability and proliferation, alone or in combination. In contrast, invasion was significantly reduced in a dose-dependent manner by clinical concentrations of minoxidil and ranolazine. Combining the two drugs produced significant additive effects at concentrations as low as 0.625 μM ranolazine and 2.5 μM minoxidil. Electrophysiologically, acute application of minoxidil shifted VGSC steady-state inactivation to more hyperpolarised potentials and slowed recovery from inactivation, consistent with inhibition of VGSC activation. We concluded (i) that clinically relevant doses of minoxidil and ranolazine individually could inhibit cellular invasiveness dose dependently and (ii) that their combination was additionally effective. Accordingly, ranolazine, minoxidil and their combination may be repurposed as novel anti-metastatic agents.
Collapse
|
4
|
Li Y, Feng Y, Liu L, Li X, Li XY, Sun X, Li KX, Zha RR, Wang HD, Zhang MD, Fan XX, Wu D, Fan Y, Zhang HC, Qiao GF, Li BY. The baroreflex afferent pathway plays a critical role in H 2S-mediated autonomic control of blood pressure regulation under physiological and hypertensive conditions. Acta Pharmacol Sin 2021; 42:898-908. [PMID: 33154555 PMCID: PMC8149652 DOI: 10.1038/s41401-020-00549-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S), which is closely related to various cardiovascular disorders, lowers blood pressure (BP), but whether this action is mediated via the modification of baroreflex afferent function has not been elucidated. Therefore, the current study aimed to investigate the role of the baroreflex afferent pathway in H2S-mediated autonomic control of BP regulation. The results showed that baroreflex sensitivity (BRS) was increased by acute intravenous NaHS (a H2S donor) administration to renovascular hypertensive (RVH) and control rats. Molecular expression data also showed that the expression levels of critical enzymes related to H2S were aberrantly downregulated in the nodose ganglion (NG) and nucleus tractus solitarius (NTS) in RVH rats. A clear reduction in BP by the microinjection of NaHS or L-cysteine into the NG was confirmed in both RVH and control rats, and a less dramatic effect was observed in model rats. Furthermore, the beneficial effects of NaHS administered by chronic intraperitoneal infusion on dysregulated systolic blood pressure (SBP), cardiac parameters, and BRS were verified in RVH rats. Moreover, the increase in BRS was attributed to activation and upregulation of the ATP-sensitive potassium (KATP) channels Kir6.2 and SUR1, which are functionally expressed in the NG and NTS. In summary, H2S plays a crucial role in the autonomic control of BP regulation by improving baroreflex afferent function due at least in part to increased KATP channel expression in the baroreflex afferent pathway under physiological and hypertensive conditions.
Collapse
Affiliation(s)
- Ying Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacy, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Yan Feng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis, IN, 46202, USA
| | - Li Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xue Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xin-Yu Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xun Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis, IN, 46202, USA
| | - Ke-Xin Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis, IN, 46202, USA
| | - Rong-Rong Zha
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Biomedical Engineering, Indiana University-Purdue University, Indianapolis, IN, 46202, USA
| | - Hong-Dan Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Meng-di Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Physics, School of Science, Indiana University-Purdue University, Indianapolis, IN, 46202, USA
| | - Xiong-Xiong Fan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Di Wu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yao Fan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hao-Cheng Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Guo-Fen Qiao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Bai-Yan Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
5
|
Wang W, Guo X, Dan H. α2A-Adrenergic Receptor Inhibits the Progression of Cervical Cancer Through Blocking PI3K/AKT/mTOR Pathway. Onco Targets Ther 2020; 13:10535-10546. [PMID: 33116632 PMCID: PMC7574911 DOI: 10.2147/ott.s264409] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022] Open
Abstract
Objective The study aimed to investigate the effect of α2A-adrenergic receptor (ADRA2A) on cervical cancer and the potential mechanisms of ADRA2A on phosphatidylinositol 3′-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway in cervical cancer cells. Methods In our study, ADRA2A expression was evaluated by analyzing cervical cancer RNA sequencing dataset from the GEPIA. The prognostic values of ADRA2A were evaluated by Kaplan–Meier method using the Cancer Genome Atlas (TCGA) database data. In addition, the expression of ADRA2A in cervical cancer cell lines was detected by qRT-PCR and Western blot. Subsequently, the roles of ADRA2A on cell proliferation, apoptosis, migration, invasion and senescence in HeLa and SiHa cells were evaluated. Moreover, tumorigenesis in nude mice was used to investigate the role of ADRA2A in vivo. We also detected the expression changes of key factors in PI3K/Akt/mTOR pathway after overexpression and silencing of ADRA2A in HeLa and SiHa cells. Results ADRA2A expression was significantly downregulated in cervical cancer tissues and cell lines. The high expression of ADRA2A was significantly associated with a better prognosis in cervical cancer patients. ADRA2A overexpression significantly suppressed cell proliferation, migration and invasion, and promoted cell senescence and apoptosis in cervical cancer cells. On the contrary, silencing ADRA2A dramatically facilitated cell proliferation, migration and invasion, and inhibited cell senescence and apoptosis in cervical cancer cells. The expressions of p-PI3K, p-AKT and p-mTOR in cervical cancer cells were notably decreased by ADRA2A overexpression and increased by silencing ADRA2A. In addition, we also confirmed that ADRA2A overexpression could suppress the xenograft tumor growth in vivo. Conclusion Our study demonstrated that ADRA2A could suppress cell proliferation, migration and invasion, as well as promote cell senescence and apoptosis through inhibiting PI3K/Akt/mTOR pathway in cervical cancer.
Collapse
Affiliation(s)
- Weina Wang
- Health Management Center, Qingdao Sixth People's Hospital, Qingdao, Shandong 266011, People's Republic of China
| | - Xin Guo
- Department of Gynecology and Obstetrics, The People's Liberation Army Navy, The 971th Hospital, Qingdao, Shandong 266071, People's Republic of China
| | - Huiwen Dan
- Department of Gynecology and Obstetrics, The People's Liberation Army Navy, The 971th Hospital, Qingdao, Shandong 266071, People's Republic of China
| |
Collapse
|
6
|
Böhme I, Schönherr R, Eberle J, Bosserhoff AK. Membrane Transporters and Channels in Melanoma. Rev Physiol Biochem Pharmacol 2020; 181:269-374. [PMID: 32737752 DOI: 10.1007/112_2020_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent research has revealed that ion channels and transporters can be important players in tumor development, progression, and therapy resistance in melanoma. For example, members of the ABC family were shown to support cancer stemness-like features in melanoma cells, while several members of the TRP channel family were reported to act as tumor suppressors.Also, many transporter proteins support tumor cell viability and thus suppress apoptosis induction by anticancer therapy. Due to the high number of ion channels and transporters and the resulting high complexity of the field, progress in understanding is often focused on single molecules and is in total rather slow. In this review, we aim at giving an overview about a broad subset of ion transporters, also illustrating some aspects of the field, which have not been addressed in detail in melanoma. In context with the other chapters in this special issue on "Transportome Malfunctions in the Cancer Spectrum," a comparison between melanoma and these tumors will be possible.
Collapse
Affiliation(s)
- Ines Böhme
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Schönherr
- Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Jena, Germany
| | - Jürgen Eberle
- Department of Dermatology, Venerology and Allergology, Skin Cancer Center Charité, University Medical Center Charité, Berlin, Germany
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Emil Fischer Center, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany. .,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany.
| |
Collapse
|
7
|
Novel Therapeutic Approaches of Ion Channels and Transporters in Cancer. Rev Physiol Biochem Pharmacol 2020; 183:45-101. [PMID: 32715321 DOI: 10.1007/112_2020_28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The expression and function of many ion channels and transporters in cancer cells display major differences in comparison to those from healthy cells. These differences provide the cancer cells with advantages for tumor development. Accordingly, targeting ion channels and transporters have beneficial anticancer effects including inhibition of cancer cell proliferation, migration, invasion, metastasis, tumor vascularization, and chemotherapy resistance, as well as promoting apoptosis. Some of the molecular mechanisms associating ion channels and transporters with cancer include the participation of oxidative stress, immune response, metabolic pathways, drug synergism, as well as noncanonical functions of ion channels. This diversity of mechanisms offers an exciting possibility to suggest novel and more effective therapeutic approaches to fight cancer. Here, we review and discuss most of the current knowledge suggesting novel therapeutic approaches for cancer therapy targeting ion channels and transporters. The role and regulation of ion channels and transporters in cancer provide a plethora of exceptional opportunities in drug design, as well as novel and promising therapeutic approaches that may be used for the benefit of cancer patients.
Collapse
|
8
|
Maqoud F, Zizzo N, Mele A, Denora N, Passantino G, Scala R, Cutrignelli A, Tinelli A, Laquintana V, la Forgia F, Fontana S, Franco M, Lopedota AA, Tricarico D. The hydroxypropyl-β-cyclodextrin-minoxidil inclusion complex improves the cardiovascular and proliferative adverse effects of minoxidil in male rats: Implications in the treatment of alopecia. Pharmacol Res Perspect 2020; 8:e00585. [PMID: 32378360 PMCID: PMC7203570 DOI: 10.1002/prp2.585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 12/22/2022] Open
Abstract
The efficacy of minoxidil (MXD) ethanolic solutions (1%-5% w/v) in the treatment of androgenetic alopecia is limited by adverse reactions. The toxicological effects of repeated topical applications of escalating dose (0.035%-3.5% w/v) and of single and twice daily doses (3.5% w/v) of a novel hydroxypropyl-β-cyclodextrin MXD GEL formulation (MXD/HP-β-CD) and a MXD solution were investigated in male rats. The cardiovascular effects were evaluated by telemetric monitoring of ECG and arterial pressure in free-moving rats. Ultrasonographic evaluation of cardiac morphology and function, and histopathological and biochemical analysis of the tissues, were performed. A pharmacovigilance investigation was undertaken using the EudraVigilance database for the evaluation of the potential cancer-related effects of topical MXD. Following the application of repeated escalating doses of MXD solution, cardiac hypertrophy, hypotension, enhanced serum natriuretic peptides and K+ -ion levels, serum liver biomarkers, and histological lesions including renal cancer were observed. In addition, the administration of a twice daily dose of MXD solution, at SF rat vs human = 311, caused reductions in the systolic, diastolic, and mean blood pressure of the rats (-30.76 ± 3%, -28.84 ± 4%, and -30.66 ± 5%, respectively, vs the baseline; t test P < .05). These effects were not reversible following washout of the MXD solution. Retrospective investigation showed 32 cases of cancer associated with the use of topical MXD in humans. The rats treated with MXD HP-β-CD were less severely affected. MXD causes proliferative adverse effects. The MXD HP-β-CD inclusion complex reduces these adverse effects.
Collapse
Affiliation(s)
- Fatima Maqoud
- Section of PharmacologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| | - Nicola Zizzo
- Anatomy PathologyDepartment of Veterinary MedicineUniversity of BariBariItaly
| | - Antonietta Mele
- Section of PharmacologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| | - Nunzio Denora
- Pharmaceutical TechnologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| | - Giuseppe Passantino
- Anatomy PathologyDepartment of Veterinary MedicineUniversity of BariBariItaly
| | - Rosa Scala
- Section of PharmacologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| | - Annalisa Cutrignelli
- Pharmaceutical TechnologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| | - Antonella Tinelli
- Anatomy PathologyDepartment of Veterinary MedicineUniversity of BariBariItaly
| | - Valentino Laquintana
- Pharmaceutical TechnologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| | - Flavia la Forgia
- Farmalabor s.r.I.Centro di Ricerca “Dr. Sergio Fontana 1900‐1982”Canosa di PugliaItaly
| | - Sergio Fontana
- Farmalabor s.r.I.Centro di Ricerca “Dr. Sergio Fontana 1900‐1982”Canosa di PugliaItaly
| | - Massimo Franco
- Pharmaceutical TechnologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| | - Angela Assunta Lopedota
- Pharmaceutical TechnologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| | - Domenico Tricarico
- Section of PharmacologyDepartment of Pharmacy – Pharmaceutical SciencesUniversity of BariBariItaly
| |
Collapse
|
9
|
Alsereihi R, Schulten HJ, Bakhashab S, Saini K, Al-Hejin AM, Hussein D. Leveraging the Role of the Metastatic Associated Protein Anterior Gradient Homologue 2 in Unfolded Protein Degradation: A Novel Therapeutic Biomarker for Cancer. Cancers (Basel) 2019; 11:890. [PMID: 31247903 PMCID: PMC6678570 DOI: 10.3390/cancers11070890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022] Open
Abstract
Effective diagnostic, prognostic and therapeutic biomarkers can help in tracking disease progress, predict patients' survival, and considerably affect the drive for successful clinical management. The present review aims to determine how the metastatic-linked protein anterior gradient homologue 2 (AGR2) operates to affect cancer progression, and to identify associated potential diagnostic, prognostic and therapeutic biomarkers, particularly in central nervous system (CNS) tumors. Studies that show a high expression level of AGR2, and associate the protein expression with the resilience to chemotherapeutic treatments or with poor cancer survival, are reported. The primary protein structures of the seven variants of AGR2, including their functional domains, are summarized. Based on experiments in various biological models, this review shows an orchestra of multiple molecules that regulate AGR2 expression, including a feedback loop with p53. The AGR2-associated molecular functions and pathways including genomic integrity, proliferation, apoptosis, angiogenesis, adhesion, migration, stemness, and inflammation, are detailed. In addition, the mechanisms that can enable the rampant oncogenic effects of AGR2 are clarified. The different strategies used to therapeutically target AGR2-positive cancer cells are evaluated in light of the current evidence. Moreover, novel associated pathways and clinically relevant deregulated genes in AGR2 high CNS tumors are identified using a meta-analysis approach.
Collapse
Affiliation(s)
- Reem Alsereihi
- Neurooncology Translational Group, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia.
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Hans-Juergen Schulten
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Sherin Bakhashab
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
- Biochemistry Department, King Abdulaziz University, P.O. Box 80218, Jeddah 21589, Saudi Arabia.
| | - Kulvinder Saini
- School of Biotechnology, Eternal University, Baru Sahib-173101, Himachal Pradesh, India.
| | - Ahmed M Al-Hejin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
- Microbiology Unit, King Fahad Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
| | - Deema Hussein
- Neurooncology Translational Group, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
10
|
Haworth AS, Brackenbury WJ. Emerging roles for multifunctional ion channel auxiliary subunits in cancer. Cell Calcium 2019; 80:125-140. [PMID: 31071485 PMCID: PMC6553682 DOI: 10.1016/j.ceca.2019.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023]
Abstract
Several superfamilies of plasma membrane channels which regulate transmembrane ion flux have also been shown to regulate a multitude of cellular processes, including proliferation and migration. Ion channels are typically multimeric complexes consisting of conducting subunits and auxiliary, non-conducting subunits. Auxiliary subunits modulate the function of conducting subunits and have putative non-conducting roles, further expanding the repertoire of cellular processes governed by ion channel complexes to processes such as transcellular adhesion and gene transcription. Given this expansive influence of ion channels on cellular behaviour it is perhaps no surprise that aberrant ion channel expression is a common occurrence in cancer. This review will focus on the conducting and non-conducting roles of the auxiliary subunits of various Ca2+, K+, Na+ and Cl- channels and the burgeoning evidence linking such auxiliary subunits to cancer. Several subunits are upregulated (e.g. Cavβ, Cavγ) and downregulated (e.g. Kvβ) in cancer, while other subunits have been functionally implicated as oncogenes (e.g. Navβ1, Cavα2δ1) and tumour suppressor genes (e.g. CLCA2, KCNE2, BKγ1) based on in vivo studies. The strengthening link between ion channel auxiliary subunits and cancer has exposed these subunits as potential biomarkers and therapeutic targets. However further mechanistic understanding is required into how these subunits contribute to tumour progression before their therapeutic potential can be fully realised.
Collapse
Affiliation(s)
- Alexander S Haworth
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - William J Brackenbury
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
11
|
Xu Y, He Q, Lu Y, Tao F, Zhao L, Ou R. MicroRNA-218-5p inhibits cell growth and metastasis in cervical cancer via LYN/NF-κB signaling pathway. Cancer Cell Int 2018; 18:198. [PMID: 30524205 PMCID: PMC6278036 DOI: 10.1186/s12935-018-0673-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 10/31/2018] [Indexed: 01/09/2023] Open
Abstract
Background We are committed to investigate miR-218-5 effects on the progression of cervical cancer (CC) cell and find out the molecular mechanism. Methods GSE9750 was obtained from GEO database and R Limma package was applied to filter out dysregulated genes. The pathways were enriched by GSEA software, ClusterProfiler and enrichplot packages to predict the function of DEGs. The binding sites of LYN were detected by miRanda and TargetScan. The miR2Disease database was used to find miRNAs related with CC. The expression of miR-218-5p and LYN were quantified by qRT-PCR and that of LYN protein was measured by western blot. The targeted relationships between miR-218-5p and LYN were verified by dual-luciferase reporter assay. Colony formation assays, wound healing, transwell invasion assay and flow cytometer analysis were performed to investigate the roles that miR-218-5p and LYN played in migration, invasion and death of cervical carcinoma. Xenografts established in nude mice were used to assess tumor growth in vivo. Results The highly expressed mRNA LYN was selected by microarray analysis in GSE9750. NF-κB signaling pathway was enriched base on GSEA results. The expression of miR-218-5p was lower but LYN was higher in CC primary tumors compared with normal control. In addition, miR-218-5p could regulate the expression of LYN in HeLa cells negatively. Overexpression of LYN could promote cell migration and invasion, but inhibit cell death in vitro, and also promote tumor formation in vivo via activating NF-κB signaling pathway which could be reversed by miR-218-5p. Conclusions MiR-218-5p suppressed the progression of CC via LYN/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yunsheng Xu
- 1Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China.,2Department of Dermatovenereology, The Seventh Affiliated Hospital, Sun Yat-sen University, No. 628 Zhenyuan Road, Guangming District, Shenzhen, 518107 Guangdong China
| | - Qin He
- 3Department of Dermatovenereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Yiyi Lu
- 3Department of Dermatovenereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Fengxing Tao
- 3Department of Dermatovenereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Liang Zhao
- 1Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Rongying Ou
- 4Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325000 Zhejiang China
| |
Collapse
|
12
|
Zhu L, Tu H, Liang Y, Tang D. MiR-218 produces anti-tumor effects on cervical cancer cells in vitro. World J Surg Oncol 2018; 16:204. [PMID: 30314496 PMCID: PMC6186038 DOI: 10.1186/s12957-018-1506-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/30/2018] [Indexed: 12/18/2022] Open
Abstract
Background As indoleamine-2,3-dioxygenase 1 (IDO1) is critical in tumor immune escape, we determined to study the regulatory mechanism of miR-218 on IDO1 in cervical cancer. Methods Real-time PCR (RT-qPCR) was carried out to measure the expression of miR-218. RT-qPCR and Western blot were performed to detect the expression of IDO1 in cervical cancer. Dual-luciferase reporter assay was used to determine the binding of miR-218 on the IDO1 3′UTR. Cell viability, apoptosis, and related factors were determined using cell counting kit-8 (CCK-8), Annexin-V/PI (propidium) assay, enzyme-linked immunosorbnent assay (ELISA), RT-qPCR, and Western blot assays after miR-218 mimics has been transfected to HeLa cervical cancer cells. Results MiR-218 was downregulated in cervical cancer. The expression of miR-218 was negatively correlated with IDO1 in cervical cancer tissues and cells. IDO1 is a direct target of miR-218. MiR-218 overexpression was found to inhibit cell viability and promoted apoptosis via activating the expression of Cleaved-Caspase-3 and to inhibit the expression of Survivin, immune factors (TGF-β, VEGF, IL-6, PGE2, COX-2), and JAK2/STAT3 pathway. Conclusion MiR-218 inhibits immune escape of cervical cancer cells by direct downregulating IDO1.
Collapse
Affiliation(s)
- Li Zhu
- Department of Gynecologic Oncology, The People's Hospital of Taojiang County, Taojiang, China
| | - Huaidong Tu
- Department of Gynecologic Oncology, The People's Hospital of Taojiang County, Taojiang, China
| | - Yanmei Liang
- Department of Gynecologic Oncology, The People's Hospital of Taojiang County, Taojiang, China
| | - Dihong Tang
- Department of Gynecologic Oncology, Hunan Cancer Hospital, No.283 Tongzipo Road, Yuelu District, Changsha, 410006, Hunan Province, China.
| |
Collapse
|