1
|
Moradifar N, Moayyedkazemi A, Mohammadi HR, Ahmadi Somaghian S, Raziani Y. Investigating the potential application of organic and non-organic nanoparticles for gastric cancer treatment: An evidence-based review. ARCHIVES OF RAZI INSTITUTE 2024; 79:264-271. [PMID: 39463705 PMCID: PMC11512170 DOI: 10.32592/ari.2024.79.2.264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/04/2023] [Indexed: 10/29/2024]
Abstract
Gastric cancer, which is considered a major health concern, is the sixth most frequent cancer and the second leading cause of cancer-related mortality across the globe. The present survey aimed to systematically review the anti-gastric cancer effect of all organic and inorganic nanoparticles (NPs) in in vitro, in vivo, and clinical trials. The investigation followed the PRISMA guidelines, and the findings were recorded in the CAMARADES-NC3Rs Preclinical Systematic Review and Meta-Analysis Facility database. A detailed search was conducted on various English databases, such as Scopus, Web of Science, EMBASE, PubMed, and Google Scholar, with no specified publication time frame to obtain papers regarding the anti-gastric cancer properties of nanoparticles. The search process was performed using the following terms "Nanoparticles," "Gastric cancer," "Anti-gastric cancer," "Metal nanoparticles," "Organic nanoparticles," "Inorganic nanoparticles, "in vitro," "Clinical," and "in vivo,". Out of 11,189 papers, 31 articles, including 19 (45.5%) in vitro, 3 (13.6%) in vivo, 3 (13.6%) clinical trials, and 6 (27.3%) in vitro/in vivo, up to 2023, met the inclusion criteria for discussion in this systematic review. The most widely used NPs were found to be organic nanoparticles, such as polylactic acid and poly lactic-co-glycolic acid (16, 80.0%), followed by inorganic nanoparticles, such as silver NPs (13, 41.9.0%). This review study highlighted the high anti-gastric cancer potential of a wide range of organic and non-organic NPs through their activity via some mechanisms, such as the induction of apoptosis, gene therapy, and drug delivery. Nonetheless, further studies, especially in clinical settings, are needed to confirm their anti-gastric effects and accurate mechanisms.
Collapse
Affiliation(s)
- N Moradifar
- Department of Internal Medicines, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - A Moayyedkazemi
- Department of Internal Medicines, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - H R Mohammadi
- Department of Internal Medicines, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - S Ahmadi Somaghian
- Department of Internal Medicines, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Y Raziani
- Nursing Department, Al-Mustaqbal University College, 51001 Hillah, Babylon, Iraq
| |
Collapse
|
2
|
Zhang L, Aragon-Sanabria V, Aditya A, Marelli M, Cao T, Chen F, Yoo B, Ma K, Zhuang L, Cailleau T, Masterson L, Turker MZ, Lee R, DeLeon G, Monette S, Colombo R, Christie RJ, Zanzonico P, Wiesner U, Subramony JA, Bradbury MS. Engineered Ultrasmall Nanoparticle Drug-Immune Conjugates with "Hit and Run" Tumor Delivery to Eradicate Gastric Cancer. ADVANCED THERAPEUTICS 2023; 6:2200209. [PMID: 37007587 PMCID: PMC10061546 DOI: 10.1002/adtp.202370009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Despite advances by recently approved antibody-drug conjugates in treating advanced gastric cancer patients, substantial limitations remain. Here, several key obstacles are overcome by developing a first-in-class ultrasmall (sub-8-nanometer (nm)) anti-human epidermal growth factor receptor 2 (HER2)-targeting drug-immune conjugate nanoparticle therapy. This multivalent fluorescent core-shell silica nanoparticle bears multiple anti-HER2 single-chain variable fragments (scFv), topoisomerase inhibitors, and deferoxamine moieties. Most surprisingly, drawing upon its favorable physicochemical, pharmacokinetic, clearance, and target-specific dual-modality imaging properties in a "hit and run" approach, this conjugate eradicated HER2-expressing gastric tumors without any evidence of tumor regrowth, while exhibiting a wide therapeutic index. Therapeutic response mechanisms are accompanied by the activation of functional markers, as well as pathway-specific inhibition. Results highlight the potential clinical utility of this molecularly engineered particle drug-immune conjugate and underscore the versatility of the base platform as a carrier for conjugating an array of other immune products and payloads.
Collapse
Affiliation(s)
- Li Zhang
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- MSK-Cornell Center for Translation of Cancer Nanomedicines, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Virginia Aragon-Sanabria
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- MSK-Cornell Center for Translation of Cancer Nanomedicines, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Anusha Aditya
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- MSK-Cornell Center for Translation of Cancer Nanomedicines, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Marcello Marelli
- AstraZeneca, One MedImmune Way, Gaithersburg, MD 20878, United States
| | - Tianye Cao
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- MSK-Cornell Center for Translation of Cancer Nanomedicines, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Feng Chen
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- MSK-Cornell Center for Translation of Cancer Nanomedicines, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Barney Yoo
- MSK-Cornell Center for Translation of Cancer Nanomedicines, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Department of Chemistry, Hunter College, New York, NY 10065, USA
| | - Kai Ma
- MSK-Cornell Center for Translation of Cancer Nanomedicines, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Department of Materials Science & Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Li Zhuang
- AstraZeneca, One MedImmune Way, Gaithersburg, MD 20878, United States
| | - Thais Cailleau
- AstraZeneca, Spirogen, QMB Innovation Centre, 42 New Road, London E1 2AX, UK
| | - Luke Masterson
- AstraZeneca, Spirogen, QMB Innovation Centre, 42 New Road, London E1 2AX, UK
| | - Melik Z Turker
- MSK-Cornell Center for Translation of Cancer Nanomedicines, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Department of Materials Science & Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Rachel Lee
- MSK-Cornell Center for Translation of Cancer Nanomedicines, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Department of Materials Science & Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Gabriel DeLeon
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- MSK-Cornell Center for Translation of Cancer Nanomedicines, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Sebastien Monette
- Laboratory of Comparative Pathology, Sloan Kettering Institute for Cancer Research, Weill Cornell Medicine, The Rockefeller University, New York, NY 10065, USA
| | - Raffaele Colombo
- AstraZeneca, One MedImmune Way, Gaithersburg, MD 20878, United States
| | - Ronald J Christie
- AstraZeneca, One MedImmune Way, Gaithersburg, MD 20878, United States
| | - Pat Zanzonico
- MSK-Cornell Center for Translation of Cancer Nanomedicines, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Department of Medical Physics, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Ulrich Wiesner
- MSK-Cornell Center for Translation of Cancer Nanomedicines, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Department of Materials Science & Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| | - J Anand Subramony
- AstraZeneca, One MedImmune Way, Gaithersburg, MD 20878, United States
| | - Michelle S Bradbury
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- MSK-Cornell Center for Translation of Cancer Nanomedicines, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| |
Collapse
|
3
|
Morarasu S, Morarasu BC, Ghiarasim R, Coroaba A, Tiron C, Iliescu R, Dimofte GM. Targeted Cancer Therapy via pH-Functionalized Nanoparticles: A Scoping Review of Methods and Outcomes. Gels 2022; 8:232. [PMID: 35448133 PMCID: PMC9030880 DOI: 10.3390/gels8040232] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: In recent years, several studies have described various and heterogenous methods to sensitize nanoparticles (NPs) to pH changes; therefore, in this current scoping review, we aimed to map current protocols for pH functionalization of NPs and analyze the outcomes of drug-loaded pH-functionalized NPs (pH-NPs) when delivered in vivo in tumoral tissue. (2) Methods: A systematic search of the PubMed database was performed for all published studies relating to in vivo models of anti-tumor drug delivery via pH-responsive NPs. Data on the type of NPs, the pH sensitization method, the in vivo model, the tumor cell line, the type and name of drug for targeted therapy, the type of in vivo imaging, and the method of delivery and outcomes were extracted in a separate database. (3) Results: One hundred and twenty eligible manuscripts were included. Interestingly, 45.8% of studies (n = 55) used polymers to construct nanoparticles, while others used other types, i.e., mesoporous silica (n = 15), metal (n = 8), lipids (n = 12), etc. The mean acidic pH value used in the current literature is 5.7. When exposed to in vitro acidic environment, without exception, pH-NPs released drugs inversely proportional to the pH value. pH-NPs showed an increase in tumor regression compared to controls, suggesting better targeted drug release. (4) Conclusions: pH-NPs were shown to improve drug delivery and enhance antitumoral effects in various experimental malignant cell lines.
Collapse
Affiliation(s)
- Stefan Morarasu
- Regional Institute of Oncology (IRO), 700483 Iasi, Romania; (C.T.); (R.I.); (G.-M.D.)
| | - Bianca Codrina Morarasu
- Internal Medicine Department, Saint Spiridon University Hospital, Grigore T Popa University of Medicine and Pharmacy, 700483 Iasi, Romania;
| | - Razvan Ghiarasim
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 700483 Iasi, Romania; (R.G.); (A.C.)
| | - Adina Coroaba
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 700483 Iasi, Romania; (R.G.); (A.C.)
| | - Crina Tiron
- Regional Institute of Oncology (IRO), 700483 Iasi, Romania; (C.T.); (R.I.); (G.-M.D.)
| | - Radu Iliescu
- Regional Institute of Oncology (IRO), 700483 Iasi, Romania; (C.T.); (R.I.); (G.-M.D.)
| | | |
Collapse
|
4
|
Alavi N, Rezaei M, Maghami P, Fanipakdel A, Avan A. Nanocarrier System for Increasing the Therapeutic Efficacy of Oxaliplatin. Curr Cancer Drug Targets 2022; 22:361-372. [PMID: 35048809 DOI: 10.2174/1568009622666220120115140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/01/2021] [Accepted: 11/24/2021] [Indexed: 11/22/2022]
Abstract
The application of Oxaliplatin (OxPt) in different malignancies is reported to be accompanied by several side effects including neuropathy, nausea, vomiting, diarrhea, mouth sores, low blood counts, loss of appetite, etc. The passive or active targeting of different tumors can improve OxPt delivery. Considering the demand for novel systems meant to improve the OxPt efficacy and define the shortcomings, we provided an overview of different approaches regarding the delivery of OxPt. There is an extending body of data that exhibits the value of Liposomes and polymer-based drug delivery systems as the most successful systems among the OxPt drug delivery procedures. Several clinical trials have been carried out to investigate the side effects and dose-limiting toxicity of liposomal oxaliplatin such as the assessment on Safety Study of MBP-426 (Liposomal Oxaliplatin Suspension for Injection) to Treat Advanced or Metastatic Solid Tumors. In addition, several studies indicated the biocompatibility and biodegradability of this product, as well as its option for being fictionalized to derive specialized smart nanosystems for the treatment of cancer. The better delivery of OxPt with weaker side effects could be generated by the exertion of Oxaliplatin, which involves the aggregation of new particles and multifaceted nanocarriers to compose a nanocomposite with both inorganic and organic nanoparticles.
Collapse
Affiliation(s)
- Negin Alavi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Majid Rezaei
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvaneh Maghami
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azar Fanipakdel
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Darroudi M, Gholami M, Rezayi M, Khazaei M. An overview and bibliometric analysis on the colorectal cancer therapy by magnetic functionalized nanoparticles for the responsive and targeted drug delivery. J Nanobiotechnology 2021; 19:399. [PMID: 34844632 PMCID: PMC8630862 DOI: 10.1186/s12951-021-01150-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/19/2021] [Indexed: 12/27/2022] Open
Abstract
With the growing demands for personalized medicine and medical devices, nanomedicine is a modern scientific field, and research continues to apply nanomaterials for therapeutic and damaged tissue diagnosis. In this regard, substantial progress has been made in synthesizing magnetic nanoparticles with desired sizes, chemical composition, morphologies, and surface chemistry. Among these materials, nanomagnetic iron oxides have demonstrated promise as unique drug delivery carriers due to cancer treatment. This carrier could lead to responsive properties to a specific trigger, including heat, pH, alternative magnetic field, or even enzymes, through functionalization and coating of magnetic nanoparticles, along with biocompatibility, good chemical stability, easy functionalization, simple processing, and ability to localize to the tumor site with the assistance of external magnetic field. Current studies have focused on magnetic nanoparticles' utilities in cancer therapy, especially for colorectal cancer. Additionally, a bibliometric investigation was performed on the public trends in the field of the magnetic nanoparticle to drug delivery and anticancer, which represented progressing applications of these carriers in the multidisciplinary zones with a general view on future research and identified potential opportunities and challenges. Furthermore, we outline the current challenges and forthcoming research perspective for high performance and fostering advanced MNPs in colorectal cancer treatment.
Collapse
Affiliation(s)
- Mahdieh Darroudi
- Department of Medical Biotechnology and Nanotechnology, School of Science, Mashhad University of Medical Science, Mashhad, Iran.,Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mehrdad Gholami
- Department of Chemistry, Marvdasht Branch, Islamic Azad University, P.O. Box 465, Marvdasht, Iran
| | - Majid Rezayi
- Department of Medical Biotechnology and Nanotechnology, School of Science, Mashhad University of Medical Science, Mashhad, Iran. .,Medical Toxicology Research Center, Mashhad University of Medical Science, Mashhad, Iran. .,Metabolic Syndrome Research Center, Mashhad University of Medical Science, Mashhad, Iran.
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran. .,Metabolic Syndrome Research Center, Mashhad University of Medical Science, Mashhad, Iran.
| |
Collapse
|
6
|
Li X, Ai S, Lu X, Liu S, Guan W. Nanotechnology-based strategies for gastric cancer imaging and treatment. RSC Adv 2021; 11:35392-35407. [PMID: 35493171 PMCID: PMC9043273 DOI: 10.1039/d1ra01947c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Gastric cancer is the second biggest cause of cancer-related deaths worldwide. Despite the improvement in deciphering molecular mechanisms, advances of detection and imaging, implementation of prevention programs, and personalized treatment, the overall curative rate remains low. In particular, with the emergence of nanomaterials, different imaging modalities can be integrated into one single platform, and combined therapies with synergetic effects against gastric cancer were established. Moreover, the development of theranostic strategies with simultaneous diagnostic and therapeutic ability was boosted by multifunctional nanoparticles. Herein, we present a comprehensive review of major nanotechnology-based breakthroughs for gastric cancer imaging and treatment. We will describe the superiority of nanomaterials used in gastric cancer and summarize nanotechnology applications for the improvement of cancer imaging and therapeutic efficacy.
Collapse
Affiliation(s)
- Xianghui Li
- Affiliated Drum Tower Hospital, Medical School of Nanjing University 321 Zhongshan RD Nanjing 210008 China +86-25-68182222. ext. 60930, 60931, 60932
| | - Shichao Ai
- Affiliated Drum Tower Hospital, Medical School of Nanjing University 321 Zhongshan RD Nanjing 210008 China +86-25-68182222. ext. 60930, 60931, 60932
| | - Xiaofeng Lu
- Affiliated Drum Tower Hospital, Medical School of Nanjing University 321 Zhongshan RD Nanjing 210008 China +86-25-68182222. ext. 60930, 60931, 60932
| | - Song Liu
- Affiliated Drum Tower Hospital, Medical School of Nanjing University 321 Zhongshan RD Nanjing 210008 China +86-25-68182222. ext. 60930, 60931, 60932
| | - Wenxian Guan
- Affiliated Drum Tower Hospital, Medical School of Nanjing University 321 Zhongshan RD Nanjing 210008 China +86-25-68182222. ext. 60930, 60931, 60932
| |
Collapse
|
7
|
Tarkistani MAM, Komalla V, Kayser V. Recent Advances in the Use of Iron-Gold Hybrid Nanoparticles for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1227. [PMID: 34066549 PMCID: PMC8148580 DOI: 10.3390/nano11051227] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/26/2022]
Abstract
Recently, there has been an increased interest in iron-gold-based hybrid nanostructures, due to their combined outstanding optical and magnetic properties resulting from the usage of two separate metals. The synthesis of these nanoparticles involves thermal decomposition and modification of their surfaces using a variety of different methods, which are discussed in this review. In addition, different forms such as core-shell, dumbbell, flower, octahedral, star, rod, and Janus-shaped hybrids are discussed, and their unique properties are highlighted. Studies on combining optical response in the near-infrared window and magnetic properties of iron-gold-based hybrid nanoparticles as multifunctional nanoprobes for drug delivery, magnetic-photothermal heating as well as contrast agents during magnetic and optical imaging and magnetically-assisted optical biosensing to detect traces of targeted analytes inside the body has been reviewed.
Collapse
Affiliation(s)
| | | | - Veysel Kayser
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia; (M.A.M.T.); (V.K.)
| |
Collapse
|
8
|
Yang F, Li A, Liu H, Zhang H. Gastric cancer combination therapy: synthesis of a hyaluronic acid and cisplatin containing lipid prodrug coloaded with sorafenib in a nanoparticulate system to exhibit enhanced anticancer efficacy and reduced toxicity. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3321-3333. [PMID: 30323564 PMCID: PMC6174904 DOI: 10.2147/dddt.s176879] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Purpose Gastric cancer is one of the most common human epithelial malignancies, and using nanoparticles (NPs) in the diagnosis and treatment of cancer has been extensively studied. The aim of this study was to develop hyaluronic acid (HA) containing lipid NPs coloaded with cisplatin (CDDP) and sorafenib (SRF) for the treatment of gastric cancer. Materials and methods HA and CDDP containing lipid prodrug was synthesized using polyethylene glycol (PEG) as a linker (HA-PEG-CDDP). HA-PEG-CDDP and SRF were entrapped into the lipid NPs by nanoprecipitation method (H-CS-NPs). The physicochemical and biochemical properties such as size, zeta potential, and drug release pattern were studied. In vitro viability was also evaluated with MKN28 and SGC7901 human gastric cancer cells. In vivo testing including biodistribution and accumulation in tumor tissue was applied in gastric tumor-bearing mice to confirm the inhibition of gastric cancer. Results H-CS-NP has a particle size of 173.2±5.9 nm, with a zeta potential of −21.5±3.2 mV. At day 21 of in vivo treatment, H-CS-NPs inhibited the tumor volume from 1,532.5±41.3 mm3 to 259.6±16.3 mm3 with no obvious body weight loss. In contrast, mice treated with free drugs had body weight loss from 20 to 15 g at the end of study. Conclusion The results indicate that H-CS-NPs enhanced the antitumor effect of drugs and reduced the systemic toxicity effects. It could be used as a promising nanomedicine for gastric cancer combination therapy.
Collapse
Affiliation(s)
- Feng Yang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong, People's Republic of China,
| | - Aimei Li
- Department of Anesthesiology, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong, People's Republic of China
| | - Han Liu
- Department of Gastroenterology, The First Affiliated Hospital of South China, Hengyang 421000, Hunan, People's Republic of China
| | - Hairong Zhang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining 272029, Shandong, People's Republic of China,
| |
Collapse
|