1
|
Zhang L, Zhang J, Zhang X, Liu S, Qi C, Gao S. miR‑100: A key tumor suppressor regulatory factor in human malignant tumors (Review). Int J Mol Med 2025; 55:67. [PMID: 40017111 PMCID: PMC11875724 DOI: 10.3892/ijmm.2025.5508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/02/2025] [Indexed: 03/01/2025] Open
Abstract
MicroRNA (miRNA/miR)‑100 is a crucial tumor‑suppressive miRNA that serves a pivotal role in the initiation and progression of various malignancies. miR‑100 regulates cancer cell proliferation, migration, invasion and apoptosis by targeting oncogenes, and acts as a molecular sponge to regulate long non‑coding RNAs and circular RNAs, thereby influencing processes such as glycolysis, autophagy and resistance to chemotherapy/radiotherapy. Furthermore, miR‑100 suppresses tumor progression by modulating key signaling pathways, including the PI3K/AKT and Wnt/β‑catenin signaling pathways. miR‑100 exhibits potential for early cancer diagnosis, particularly in cancer types such as gastric and lung cancer, where it can serve as a non‑invasive biomarker for early screening. As a therapeutic target, restoring miR‑100 expression can enhance the efficacy of chemotherapy or targeted therapy, thereby improving patient prognosis. Although challenges remain in its clinical application, including delivery systems and safety concerns, ongoing research suggests that miR‑100 holds promise for personalized treatment and early diagnosis. Given that cancer remains a global health challenge, research on miR‑100 provides hope for cancer therapy, particularly in China, where the mortality rates of malignancies such as gastric, lung and liver cancer continue to rise, further emphasizing its potential for clinical translation.
Collapse
Affiliation(s)
- Liang Zhang
- Department of General Surgery I, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Jiuling Zhang
- Department of General Surgery I, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Xue Zhang
- School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Shuang Liu
- School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Chunyu Qi
- School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
- Department of Infection, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Shengyu Gao
- Department of General Surgery I, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| |
Collapse
|
2
|
Wang Y, Huang D, Li M, Yang M. MicroRNA-99 family in cancer: molecular mechanisms for clinical applications. PeerJ 2025; 13:e19188. [PMID: 40161350 PMCID: PMC11955196 DOI: 10.7717/peerj.19188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNA sequences that regulate gene expression post-transcriptionally. The miR-99 family, which is highly evolutionarily conserved, comprises three homologs: miR-99a, miR-99b, and miR-100. Its members are under-expressed in most cancerous tissues, suggesting their cancer-repressing properties in multiple cancers; however, in some contexts, they also promote malignant lesion progression. MiR-99 family members target numerous genes involved in various tumor-related processes such as tumorigenesis, proliferation, cell-cycle regulation, apoptosis, invasion, and metastasis. We review the recent research on this family, summarize its implications in cancer, and explore its potential as a biomarker and cancer therapeutic target. This review contributes to the clinical translation of the miR-99 family members.
Collapse
Affiliation(s)
- Yueyuan Wang
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, ChangChun, Jilin, China
| | - Dan Huang
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, ChangChun, Jilin, China
| | - Mingxi Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, ChangChun, Jilin, China
| | - Ming Yang
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, ChangChun, Jilin, China
| |
Collapse
|
3
|
Mai Z, Mi Y, Jiang M, Wan S, Di Q. Expression and Related Mechanisms of miR-100 and TRIB2 in COPD Patients. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6556208. [PMID: 35494527 PMCID: PMC9050250 DOI: 10.1155/2022/6556208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022]
Abstract
Background Chronic obstructive pulmonary disease (COPD) is one of the most common chronic respiratory diseases in the world. COPD is a general term for a class of lung diseases, including emphysema, chronic bronchitis, and refractory asthma. It is characterized by irreversible airflow obstruction and chronic tracheal inflammation. Objective This study aimed to investigate the expression and related mechanisms of miR-100 and TRIB2 in patients with COPD. Methods We collected the serum of patients admitted to our hospital and healthy volunteers undergoing physical examination at the same time, pulmonary fibroblasts were purchased for the experiments, miR-100 was overexpressed, and TRIB2 expression was inhibited in cells. The miR-100 and TRIB2 expression levels in serum and cells were detected by qRT-PCR and Western blot, cell proliferation and apoptosis were detected by CCK-8 and flow cytometry, and the relationship between miR-100 and TRIB2 was explored by the dual-luciferase report. Results The miR-100 expression in the serum of the COPD group was expressed normally, while the TRIB2 expression was expressed abnormally (p < 0.05). The AUC of serum miR-146a and TRIB2 for COPD diagnosis were 0.965 and 0.954, respectively. Overexpressing miR-100 and inhibiting the TRIB2 expression could decrease cell proliferation and increase apoptosis rate. According to the dual-luciferase report, miR-100 and TRIB2 had a targeted regulatory relationship. Rescue experiments showed that overexpressing TRIB2 could reverse the changes of cell proliferation and apoptosis caused by overexpression of miR-100. Conclusion miR-100 and TRIB2 were expressed abnormally in serum of COPD patients, and miR-100 could inhibit proliferation of pulmonary fibroblasts and promote their apoptosis.
Collapse
Affiliation(s)
- Zhitao Mai
- Department of Respiratory and Critical Care Medicine, Cangzhou Central Hospital, Cangzhou 061001, Hebei, China
| | - Ya Mi
- Hemodialysis Room, Cangzhou Central Hospital, Cangzhou 061001, Hebei, China
| | - Mingming Jiang
- Department of Respiratory and Critical Care Medicine, Cangzhou Central Hospital, Cangzhou 061001, Hebei, China
| | - Shanzhi Wan
- Department of Respiratory and Critical Care Medicine, Cangzhou Central Hospital, Cangzhou 061001, Hebei, China
| | - Qingguo Di
- Department of Respiratory and Critical Care Medicine, Cangzhou Central Hospital, Cangzhou 061001, Hebei, China
| |
Collapse
|
4
|
miR-100 Suppresses the Proliferation, Invasion, and Migration of Hepatocellular Carcinoma Cells via Targeting CXCR7. J Immunol Res 2021; 2021:9920786. [PMID: 34337085 PMCID: PMC8313327 DOI: 10.1155/2021/9920786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/30/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
This study is to elucidate the functions of miR-100 in hepatocellular carcinoma progression and to explore the underlying mechanisms. Expression levels of miR-100 in normal-cancer hepatocellular carcinoma tissues were measured using quantitative real-time PCR (qRT-PCR). The invasive and proliferative abilities of hepatocellular carcinoma cell lines transfected with mimic-NC or mimic-miR-100 were measured using transwell, CCK-8, and colony formation assays. The binding sites between CXCR7 and miR-100 were determined using luciferase reporter assays. The correlation of CXCR7 and miR-100 in hepatocellular carcinoma progression was further confirmed by cotransfection assays. Our results showed that miR-100 was significantly lower expressed in hepatocellular carcinoma tissues and negatively associated with CXCR7 expression. Cell functional assays' results found that upregulation of miR-100 inhibited the proliferative, invasive, and migrative abilities in hepatocellular carcinoma cells. Luciferase reporter assay suggested that CXCR7 mRNA and miR-100 bound one another. Increasing CXCR7 expression reversed the inhibitive effects of upregulated miR-100 in hepatocellular carcinoma cells. Further study showed that miR-100/CXCR7 played a role in hepatocellular carcinoma progression by regulating metalloproteinase-2 (MMP2) and vascular endothelial growth factor (VEGF). Conclusively, miR-100 exerts antitumor effects on hepatocellular carcinoma. Overexpression of miR-100 attenuates the invasive and proliferative abilities of hepatocellular carcinoma cells by targeting CXCR7.
Collapse
|
5
|
Zhang S, Wang B, Zheng L, Fu Z, Fu Y, Huang W, Cheng A. Advances in research on microRNAs related to the invasion and metastasis of nasopharyngeal carcinoma. Curr Mol Pharmacol 2021; 15:463-474. [PMID: 34126919 DOI: 10.2174/1874467214666210614150720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/22/2021] [Accepted: 02/22/2021] [Indexed: 12/24/2022]
Abstract
Nasopharyngeal carcinoma (NPC), which is associated with latent Epstein-Barr virus infection in most cases, is a unique epithelial malignancy arising from the nasopharyngeal mucosal lining. Accumulating evidence provides insights into the genetic and molecular aberrations that likely drive nasopharyngeal tumor development and progression. We review recent analyses of microRNAs (miRNAs), including Epstein-Barr virus-encoded miRNAs (EBV-encoded miRNAs) and dysregulated cellular miRNAs, that may be related to the metastasis of nasopharyngeal carcinoma. The studies summarized herein have greatly expanded our knowledge of the molecular biology of NPC involving miRNAs, and they may provide new biological targets for clinical diagnosis and reveal the potential of microRNA therapeutics. However, much information remains to be uncovered.
Collapse
Affiliation(s)
- ShanShan Zhang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, China
| | - BaiQi Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, China
| | - LuLu Zheng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, China
| | - ZhuQiong Fu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, China
| | - YiTing Fu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, China
| | - WeiGuo Huang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, China
| | - AiLan Cheng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
6
|
Shi Y, Zhang DD, Liu JB, Yang XL, Xin R, Jia CY, Wang HM, Lu GX, Wang PY, Liu Y, Li ZJ, Deng J, Lin QL, Ma L, Feng SS, Chen XQ, Zheng XM, Zhou YF, Hu YJ, Yin HQ, Tian LL, Gu LP, Lv ZW, Yu F, Li W, Ma YS, Da F. Comprehensive analysis to identify DLEU2L/TAOK1 axis as a prognostic biomarker in hepatocellular carcinoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:702-718. [PMID: 33575116 PMCID: PMC7851426 DOI: 10.1016/j.omtn.2020.12.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/19/2020] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest malignant tumors that are harmful to human health. Increasing evidence has underscored the critical role of the competitive endogenous RNA (ceRNA) regulatory networks among various human cancers. However, the complexity and behavior characteristics of the ceRNA network in HCC were still unclear. In this study, we aimed to clarify a phosphatase and tensin homolog (PTEN)-related ceRNA regulatory network and identify potential prognostic markers associated with HCC. The expression profiles of three RNAs (long non-coding RNAs [lncRNAs], microRNAs [miRNAs], and mRNAs) were extracted from The Cancer Genome Atlas (TCGA) database. The DLEU2L-hsa-miR-100-5p/ hsa-miR-99a-5p-TAOK1 ceRNA network related to the prognosis of HCC was obtained by performing bioinformatics analysis. Importantly, we identified the DLEU2L/TAOK1 axis in the ceRNA by using correlation analysis, and it appeared to become a clinical prognostic model by Cox regression analysis. Furthermore, methylation analyses suggested that the abnormal upregulation of the DLEU2L/TAOK1 axis likely resulted from hypomethylation, and immune infiltration analysis showed that the DLEU2L/TAOK1 axis may have an impact on the changes in the tumor immune microenvironment and the development of HCC. In summary, the current study constructing a ceRNA-based DLEU2L/TAOK1 axis might be a novel important prognostic factor associated with the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Yi Shi
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.,Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China.,College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Dan-Dan Zhang
- Department of Pathology, Shihezi University School of Medicine, Shihezi 832002, Xinjiang, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ji-Bin Liu
- Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China
| | - Xiao-Li Yang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Rui Xin
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Cheng-You Jia
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hui-Min Wang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Gai-Xia Lu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Pei-Yao Wang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yu Liu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.,College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Zi-Jin Li
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Jing Deng
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Qin-Lu Lin
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Liang Ma
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Shan-Shan Feng
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Xiao-Qi Chen
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Xiang-Min Zheng
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Ya-Fu Zhou
- Department of Cardiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan, China
| | - Yong-Jun Hu
- Department of Cardiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan, China
| | - Hua-Qun Yin
- School of Resource Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China
| | - Lin-Lin Tian
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Li-Peng Gu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhong-Wei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Wen Li
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.,College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, Hunan, China
| | - Yu-Shui Ma
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,Department of Pancreatic and Hepatobiliary Surgery, Cancer Hospital, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Fu Da
- National Engineering Laboratory for Deep Process of Rice and Byproducts, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
7
|
Le F, Ou Y, Luo P, Zhong X. LncRNA NCK1-AS1 in plasma distinguishes oral ulcer from early-stage oral squamous cell carcinoma. ACTA ACUST UNITED AC 2020; 27:16. [PMID: 33194849 PMCID: PMC7656691 DOI: 10.1186/s40709-020-00126-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/23/2020] [Indexed: 12/18/2022]
Abstract
Background Oral squamous cell carcinoma (OSCC) at early stages can be misdiagnosed as an oral ulcer (OU) due to similar symptoms, such as chronic and indurated ulcer. LncRNA NCK1-AS1 has been characterized as a key player in cervical cancer, while its role in OSCC is unknown. Methods All participants were selected at Jiangxi Province Tumor Hospital from December 2016 to December 2018. Expression levels of NCK1-AS1 and miR-100 in plasma from both OSCC and OU patients were measured by RT-qPCR. Diagnostic analysis was performed through ROC curve. Potential interactions between NCK1-AS1 and miR-100 were detected by cell transfection experiments. Cell invasion and migration were assessed by Transwell assays. Results The expression of NCK1-AS1 was upregulated in early-stage OSCC patients but not in OU patients. Upregulation of NCK1-AS1 distinguished OSCC patients from OU patients. The expression of miR-100 was inversely correlated with the expression of NCK1-AS1. Overexpression of NCK1-AS1 was followed by promoted OSCC cell invasion and migration. Overexpression of miR-100 did not affect the expression of NCK1-AS1 but inhibited the role of NCK1-AS1. Conclusions Therefore, NCK1-AS1 may promote the metastasis of OSCC by downregulating miR-100.
Collapse
Affiliation(s)
- Fei Le
- Department of Head and Neck Surgery, Jiangxi Province Tumor Hospital, Nanchang City, Jiangxi Province 330029 People's Republic of China
| | - Yangqian Ou
- Department of Intensive Medicine, Jiangxi Province Tumor Hospital, Nanchang City, Jiangxi Province 330029 People's Republic of China
| | - Ping Luo
- Department of Surgical Oncology, Nanchang Third Hospital, Nanchang City, Jiangxi Province 330002 People's Republic of China
| | - Xiaoming Zhong
- Department of Radiotherapy, Jiangxi Province Tumor Hospital, No.519 Beijing East Road, Nanchang City, Jiangxi Province 330029 People's Republic of China
| |
Collapse
|
8
|
Lin L, Huang Y, Zhuang W, Lin P, Ma X. miR-100 inhibits cell proliferation in mantle cell lymphoma by targeting mTOR. Exp Hematol Oncol 2020; 9:25. [PMID: 32999755 PMCID: PMC7519521 DOI: 10.1186/s40164-020-00182-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/20/2020] [Indexed: 12/27/2022] Open
Abstract
Background miR-100 is reported to be associated with cell proliferation and apoptosis. However, the function of miR-100 in mantle cell lymphoma (MCL) is unknown. The purpose of this study is to analyze the abnormal expression of miR-100 and mTOR in MCL together with their potential biological function and pathogenesis. Method Eighteen MCL tissue samples and 3 cell lines (Jeko-1, Mino, Granta-519) were investigated in this research study, while eighteen samples of proliferative lymphadenitis from patients and peripheral lymphocyte cells from healthy volunteers served as controls. The expression and alteration of miR-100 and mTOR mRNA were detected by RT-PCR. The expression and alteration of mTOR protein were explored by Western blot. LV-miR-100-up and LV-mTOR-RNAi were constructed and transfected by lentivirus transfection. Cell proliferation, cell apoptosis and the cell cycle were detected using CCK-8 and flow cytometry. Bioinformatics prediction software was used to predict the miR-100 target gene of mTOR. A double luciferase experiment was used to verify miR-100 targeting at the mTOR-3′-UTR. The interaction between miR-100 and mTOR was further studied using recovery experiments. GraphPad Prism 7 software (version 7.2) was used for statistical analysis, and a P value < 0.05 was considered statistically significant. Results We found that the expression of miR-100 mRNA in MCL tissues and cell lines was lower, while that of the mTOR protein was higher. There was a negative correlation between miR-100 and mTOR in both MCL tissues and cell lines. Promoting miR-100 and inhibiting mTOR could inhibit cell proliferation, induce cell apoptosis and block the cell cycle in the G1 phase. A double luciferase reporter assay showed that mTOR was one of the target genes of miR-100. The recovery experiment demonstrated that PV-mTOR-up partially set off the effect of LV-miR-100-up on decreasing mTOR expression, inhibiting proliferation, inducing apoptosis and blocking the cell cycle in G1 phase in both Jeko-1 and Mino cells. Conclusions Abnormal expression of miR-100 and mTOR was found in MCL, which included downregulation of miR-100 and upregulation of mTOR. The expression of mTOR is negatively correlated with miR-100. It may play an important role in MCL pathogenesis. miR-100 up-regulation can inhibit cell proliferation, promote cell apoptosis, and inhibit cell cycle in G1 phase by targeting the mTOR gene. miR-100 may potentially be an anti-mantle cell lymphoma gene.
Collapse
Affiliation(s)
- Luhui Lin
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian China
| | - Yiqun Huang
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian China
| | - Wei Zhuang
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian China
| | - Ping Lin
- Graduate School, Fujian Medical University, Fuzhou, Fujian China
| | - Xudong Ma
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian China
| |
Collapse
|
9
|
Zhang H, Yang K, Ren T, Huang Y, Liang X, Yu Y, Wang W, Niu J, Lou J, Tang X, Guo W. miR-100-5p Inhibits Malignant Behavior of Chordoma Cells by Targeting IGF1R. Cancer Manag Res 2020; 12:4129-4137. [PMID: 32606920 PMCID: PMC7293400 DOI: 10.2147/cmar.s252185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/13/2020] [Indexed: 12/27/2022] Open
Abstract
Purpose Our research aimed to illuminate the role of miR-100-5p in chordoma and potential mechanism. Materials and Methods We used microRNA array analysis to explore differentially expressed miRNAs in chordoma tissue and then verified by qRT-PCR. Cell proliferation and transwell assay were used to evaluate the function of miR-100-5p. Cell apoptosis was analyzed by flow cytometry, and using biological software, we predicted that the insulin-like growth factor 1 receptor (IGF1R) could be the target gene of miR-100-5p, which was then validated by dual luciferase assays and Western blot. Results miR-100-5p was downregulated in chordoma tissues. Overexpression of miR-100-5p could suppress the growth of chordoma both in vitro and in vivo, and miR-100-5p could inhibit the migration and invasion of chordoma cells partially by suppressing epithelial–mesenchymal transition (EMT). Furthermore, IGF1R was validated as the target gene of miR-100-5p and expressed in most chordoma tissues. Conclusion In conclusion, our results showed that miR-100-5p was lowly expressed in chordoma and inhibited tumor malignant progression by targeting IGF1R.
Collapse
Affiliation(s)
- Hongliang Zhang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Kang Yang
- Department of Orthopedics, Yangzhou University Affiliated Hospital, Yangzhou, People's Republic of China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Yi Huang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Xin Liang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Yiyang Yu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Wei Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Jianfang Niu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Jingbing Lou
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Xiaodong Tang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| |
Collapse
|
10
|
Han W, Ren X, Yang Y, Li H, Zhao L, Lin Z. microRNA-100 functions as a tumor suppressor in non-small cell lung cancer via regulating epithelial-mesenchymal transition and Wnt/β-catenin by targeting HOXA1. Thorac Cancer 2020; 11:1679-1688. [PMID: 32364673 PMCID: PMC7262897 DOI: 10.1111/1759-7714.13459] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a leading subtype in lung cancer, with high morbidities and mortalities worldwide. microRNA (miRNA) has appeared to play indispensable roles in a variety of solid carcinomas. The current study focused on the functions of miR-100 in NSCLC. METHODS qRT-PCR was performed to detect miR-100 and HOXA1 expressions in NSCLC tissues and cells. MTT and transwell assays were used to determine the functions of miR-100 in NSCLC cell proliferation, invasion and migration abilities. Western blot was used to measure related protein expressions. RESULTS qRT-PCR results showed that miR-100 expressions were dramatically decreased in NSCLC tissues. MTT assays indicated that miR-100 restoration inhibited NSCLC cell proliferation. Furthermore, transwell assay was performed to determine the impacts of miR-100 on NSCLC invasion and migration abilities. As expected, the invasion and migration capacities were significantly repressed. Direct interactions between HOXA1 and miR-100 were also verified via dual-luciferase reporter assays. Western blot analysis demonstrated that miR-100 exerted suppressive functions via regulating EMT and Wnt/β-catenin in NSCLC cells. CONCLUSIONS Our results showed that miR-100 served antitumor roles in NSCLC, providing new evidence of miR-100 as a promising therapeutic biomarker in NSCLC.
Collapse
Affiliation(s)
- Weizhong Han
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoxia Ren
- Department of Cardiothoracic Surgey, Yantaishan Hospital, Yantai, China
| | - Yupeng Yang
- Department of General Surgery, Jinan Zhangqiu District Hospital of TCM, Jinan, China
| | - Haixia Li
- Department of Anesthesiology, The People's Hospital of Zhangqiu Area, Jinan, China
| | - Lin Zhao
- Department of Respiratory Medicine, People's Hospital of Rizhao, Rizhao, China
| | - Zhaoxia Lin
- Department of Clinical Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
11
|
He W, Huang Y, Jiang CC, Zhu Y, Wang L, Zhang W, Huang W, Zhou T, Tang S. miR-100 Inhibits Cell Growth and Proliferation by Targeting HOXA1 in Nasopharyngeal Carcinoma. Onco Targets Ther 2020; 13:593-602. [PMID: 32021301 PMCID: PMC6980857 DOI: 10.2147/ott.s228783] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/21/2019] [Indexed: 01/08/2023] Open
Abstract
Background Increasing evidence indicates that the dysregulation of miRNAs plays a vital role in tumorigenesis and progression of nasopharyngeal carcinoma (NPC). Thus, it is necessary to further investigate the function and mechanism of miRNAs in NPC. Methods miR-100 expression was analyzed using publicly available databases and then tested using quantitative RT-PCR in NPC tissues and cell lines. MTT and colony formation assays and xenograft tumor model were used to test the NPC cell growth and proliferation abilities while modulating miR-100 expression. The target of miR-100 was predicted with TargetScan and validated with luciferase reporter assay, quantitative RT-PCR, and Western blot. Results The expression of miR-100 was significantly reduced in NPC tissues and cell lines. Overexpression of miR-100 obviously suppressed NPC cell growth and proliferation, whereas silencing miR-100 promoted NPC cell growth and proliferation in vitro. HOXA1 (homeobox A1) was validated as a direct target of miR-100, and restoring HOXA1 expression could reverse the inhibitive effect of miR-100 on NPC cell growth and proliferation. The mRNA and protein expression of HOXA1 was increased in NPC cell lines. Furthermore, ectopic expression of miR-100 inhibited xenograft tumor growth in vivo. Conclusion Taken together, our findings suggest that miR-100 could suppress NPC growth and proliferation through targeting HOXA1, providing a novel target for the miRNA-mediated therapy for patients with NPC in the future.
Collapse
Affiliation(s)
- Weifeng He
- Department of Oncology, Brain Hospital of Hunan Province, Changsha 410007, Hunan Province, People's Republic of China
| | - Yun Huang
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, People's Republic of China
| | - Cheng Chuan Jiang
- Department of Oncology, Brain Hospital of Hunan Province, Changsha 410007, Hunan Province, People's Republic of China
| | - Yuan Zhu
- People's Hospital of Changshou Chongqing, Chongqing 401220, People's Republic of China
| | - Ling Wang
- Yi Chang Central People's Hospital, Yichang 443000, Hubei Province, People's Republic of China
| | - Weiwei Zhang
- Department of Oncology, Brain Hospital of Hunan Province, Changsha 410007, Hunan Province, People's Republic of China
| | - Weiguo Huang
- Cancer Research Institute, Hengyang Medical College of University of South China, Hengyang 421001, Hunan Province, People's Republic of China
| | - Ting Zhou
- Department of Oncology, Brain Hospital of Hunan Province, Changsha 410007, Hunan Province, People's Republic of China.,Department of Clinical Pharmacy, College of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha 410007, Hunan Province, People's Republic of China
| | - Sanyuan Tang
- Department of Oncology, Brain Hospital of Hunan Province, Changsha 410007, Hunan Province, People's Republic of China
| |
Collapse
|
12
|
Ji X, Jiang P, Luo J, Li M, Bai Y, Zhang J, Han B. Identification and characterization of miRNAs involved in cold acclimation of zebrafish ZF4 cells. PLoS One 2020; 15:e0226905. [PMID: 31923196 PMCID: PMC6953832 DOI: 10.1371/journal.pone.0226905] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/07/2019] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) play vital roles in various biological processes under multiple stress conditions by leading to mRNA cleavage or translational repression. However, the detailed roles of miRNAs in cold acclimation in fish are still unclear. In the present study, high-throughput sequencing was performed to identify miRNAs from 6 small RNA libraries from the zebrafish embryonic fibroblast ZF4 cells under control (28°C, 30 days) and cold-acclimation (18°C, 30 days) conditions. A total of 414 miRNAs, 349 known and 65 novel, were identified. Among those miRNAs, 24 (19 known and 5 novel) were up-regulated, and 23 (9 known and 14 novel) were down-regulated in cold acclimated cells. The Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analyses indicated that the target genes of known differentially expressed miRNAs (DE-miRNA) are involved in cold acclimation by regulation of phosphorylation, cell junction, intracellular signal transduction, ECM-receptor interaction and so on. Moreover, both miR-100-3p inhibitor and miR-16b mimics could protect ZF4 cells under cold stress, indicating the involvement of miRNA in cold acclimation. Further study showed that miR-100-3p and miR-16b could regulate inversely the expression of their target gene (atad5a, cyp2ae1, lamp1, rilp, atxn7, tnika, btbd9), and that overexpression of miR-100-3p disturbed the early embryonic development of zebrafish. In summary, the present data show that miRNAs are closely involved in cold acclimation in zebrafish ZF4 cells and provide information for further understanding of the roles of miRNAs in cold acclimation in fish.
Collapse
Affiliation(s)
- Xiangqin Ji
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Penglei Jiang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Juntao Luo
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Mengjia Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yajing Bai
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Junfang Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| | - Bingshe Han
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- * E-mail:
| |
Collapse
|
13
|
He QL, Qin SY, Tao L, Ning HJ, Jiang HX. Prognostic value and prospective molecular mechanism of miR-100-5p in hepatocellular carcinoma: A comprehensive study based on 1,258 samples. Oncol Lett 2019; 18:6126-6142. [PMID: 31788087 PMCID: PMC6865135 DOI: 10.3892/ol.2019.10962] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
The prognostic value and molecular mechanism of microRNA-100-5p (miR-100-5p) in hepatocellular carcinoma (HCC) are still unclear. To explore the prognostic value and the mechanism of miR-100-5p in HCC, the present study analyzed the results of 18 previous studies and bioinformatic datasets. The clinical significance of miR-100-5p and its targets in HCC were investigated using The Cancer Genome Atlas and the Gene Expression Omnibus, as well as relevant literature. In total, 12 online tools were used to predict the target genes of miR-100-5p. Bioinformatics analysis and Spearman correlation analysis were performed, and genomic alterations of the hub genes were evaluated. A meta-analysis with 1,258 samples revealed that miR-100-5p was significantly downregulated in HCC [standard mean difference (SMD), -0.94; 95% confidence interval (CI), -1.14 to -0.74; I2, 35.2%]. Lower miR-100-5p expression was associated with poorer clinical characteristics and a poorer prognosis for patients with HCC. Additionally, bioinformatics analysis revealed that the 'regulation of transcription', 'chromatin remodeling complex', 'transcription regulator activity', 'pathways in cancer' and 'heparan sulfate biosynthesis' were the most enriched terms. Furthermore, expression of histone deacetylase (HDAC)2, HDAC3, SHC-transforming protein 1 (SHC1), Ras-related protein Rac1 (RAC1) and E3 ubiquitin-protein ligase CBL (CBL) was negatively correlated with miR-100-5p expression. Among these, upregulated HDAC2 [hazard ratio (HR), 1.910; 95% CI, 1.309-2.787; P=0.0007], HDAC3 (HR, 1.474; 95% CI, 1.012-2.146; P=0.0435), SHC1 (HR, 1.52; 95% CI, 1.043-2.215; P=0.0281) and RAC1 (HR, 1.817; 95% CI, 1.248-2.645; P=0.0022) were associated with shorter survival. Alterations in HDAC2, SHC1, RAC1 and IGF1R were linked with a poorer outcome for HCC, and alternative splicing of SHC and RAC1 were significantly decreased and increased in HCC, respectively. In summary, the downregulation of miR-100-5p may be involved in the progression and prognosis of HCC. The upregulation of HDAC2, HDAC3, SHC1 and RAC1 may indicate a poorer survival rate for patients with HCC. Thus, miR-100-5p and these 4 potential target genes may provide novel therapeutic targets and prognostic predictors for patients with HCC.
Collapse
Affiliation(s)
- Qing-Lin He
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Shan-Yu Qin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Lin Tao
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hong-Jian Ning
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hai-Xing Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
14
|
Song SK, Jung WY, Park SK, Chung CW, Park Y. Significantly different expression levels of microRNAs associated with vascular invasion in hepatocellular carcinoma and their prognostic significance after surgical resection. PLoS One 2019; 14:e0216847. [PMID: 31513595 PMCID: PMC6742465 DOI: 10.1371/journal.pone.0216847] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/25/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Although gross vascular invasion (VI) has prognostic significance in patients with hepatocellular carcinoma (HCC) who have undergone hepatic resection, few studies have investigated the relationship between gross VI and aberrant expression of microribonucleic acids (miRNAs and miRs). Thus, the objective of this study was to identify miRNAs selectively expressed in HCC with gross VI and investigate their prognostic significance. MATERIALS AND METHODS Eligible two datasets (accession number: GSE20594 and GSE67140) were collected from the National Center for Biotechnology Information's (NCBI) Gene Expression Omnibus (GEO) database to compare miRNAs expression between HCC with and without gross VI. Differentially expressed miRNAs were externally validated using expression data from The Cancer Genome Atlas (TCGA) database. Prognostic significance and predicted functions of selected miRNAs for HCC were also investigated. RESULTS Thirty-five miRNAs were differentially expressed between HCC with and without gross VI in both datasets. Among them, three miRNAs were validated using TCGA database. miR-99a, miR-100, and miR-148a were downregulated to a greater extent in patients with HCC and gross VI than in those with HCC but no gross VI. Receiver operating characteristic (ROC) curve analysis showed discriminatory power of these miRNAs in predicting gross VI. Multivariate survival analysis revealed that types of surgery, advanced tumor node metastasis (TNM) stage, and low expression of miR-100-5p were independently associated with tumor recurrence. It also revealed that types of surgery, advanced TNM stage, low expression of miR-100-5p and miR-148a-3p were independent risk factors for overall survival (OS) after hepatic resection for HCC. A text mining analysis revealed that these miRNAs were linked to multifaceted hallmarks of cancer, including "invasion and metastasis." CONCLUSIONS Low expressions of miR-100-5p and miR-148a-3p were associated with gross VI and poor survival of patients after hepatic resection for HCC.
Collapse
Affiliation(s)
- Sung Kyu Song
- Department of Surgery, Catholic Kwandong University International St. Mary’s Hospital, Incheon, Republic of Korea
| | - Woon Yong Jung
- Department of Pathology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Seung-Keun Park
- Department of Supercomputing M&S Technology Development, Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
| | - Chul-Woon Chung
- Department of Surgery, Catholic Kwandong University International St. Mary’s Hospital, Incheon, Republic of Korea
| | - Yongkeun Park
- Department of Surgery, Catholic Kwandong University International St. Mary’s Hospital, Incheon, Republic of Korea
- * E-mail:
| |
Collapse
|
15
|
Billa PA, Faulconnier Y, Ye T, Chervet M, Le Provost F, Pires JAA, Leroux C. Deep RNA-Seq reveals miRNome differences in mammary tissue of lactating Holstein and Montbéliarde cows. BMC Genomics 2019; 20:621. [PMID: 31362707 PMCID: PMC6668132 DOI: 10.1186/s12864-019-5987-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Background Genetic polymorphisms are known to influence milk production and composition. However, the genomic mechanisms involved in the genetic regulation of milk component synthesis are not completely understood. MicroRNAs (miRNAs) regulate gene expression. Previous research suggests that the high developmental potential of the mammary gland may depend in part on a specific miRNA expression pattern. The objective of the present study was to compare the mammary gland miRNomes of two dairy cow breeds, Holstein and Montbéliarde, which have different mammogenic potentials that are related to differences in dairy performance. Results Milk, fat, protein, and lactose yields were lower in Montbéliarde cows than in Holstein cows. We detected 754 distinct miRNAs in the mammary glands of Holstein (n = 5) and Montbéliarde (n = 6) midlactating cows using RNA-Seq technology, among which 738 were known and 16 were predicted miRNAs. The 25 most abundant miRNAs accounted for 90.6% of the total reads. The comparison of their abundances in the mammary glands of Holstein versus Montbéliarde cows identified 22 differentially expressed miRNAs (Padj ≤ 0.05). Among them, 11 presented a fold change ≥2, and 2 (miR-100 and miR-146b) were highly expressed. Among the most abundant miRNAs, miR-186 is known to inhibit cell proliferation and epithelial-to-mesenchymal transition. Data mining showed that 17 differentially expressed miRNAs with more than 20 reads were involved in the regulation of mammary gland plasticity. Several of them may potentially target mRNAs involved in signaling pathways (such as mTOR) and lipid metabolism, thereby indicating that they could influence milk composition. Conclusion We found differences in the mammary gland miRNomes of two dairy cattle breeds. These differences suggest a potential role for miRNAs in mammary gland plasticity and milk component synthesis, both of which are related to milk production and composition. Further research is warranted on the genetic regulation of miRNAs and their role in milk synthesis. Electronic supplementary material The online version of this article (10.1186/s12864-019-5987-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P A Billa
- Institut National de la Recherche Agronomique (INRA), Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, UMR1213 Herbivores, F-63122, Saint-Genès-Champanelle, France
| | - Y Faulconnier
- Institut National de la Recherche Agronomique (INRA), Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, UMR1213 Herbivores, F-63122, Saint-Genès-Champanelle, France
| | - T Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U964, Université de Strasbourg, 67404, Illkirch, France
| | - M Chervet
- Department of Food Science & Technology, University of California Davis, Davis, CA, USA
| | - F Le Provost
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, F-78352, France
| | - J A A Pires
- Institut National de la Recherche Agronomique (INRA), Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, UMR1213 Herbivores, F-63122, Saint-Genès-Champanelle, France
| | - C Leroux
- Institut National de la Recherche Agronomique (INRA), Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, UMR1213 Herbivores, F-63122, Saint-Genès-Champanelle, France. .,Department of Food Science & Technology, University of California Davis, Davis, CA, USA.
| |
Collapse
|