1
|
Sajeev A, BharathwajChetty B, Manickasamy MK, Alqahtani MS, Abbas M, Shakibaei M, Sethi G, Ma Z, Kunnumakkara AB. Nuclear receptors in ovarian cancer: changing paradigms in cancer therapeutics. Front Oncol 2024; 14:1383939. [PMID: 39077471 PMCID: PMC11284039 DOI: 10.3389/fonc.2024.1383939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/31/2024] [Indexed: 07/31/2024] Open
Abstract
Ovarian cancer (OVC) is one of the most common causes of cancer-related deaths in women worldwide. Despite advancements in detection and therapy, the prognosis of OVC remains poor due to late diagnosis and the lack of effective therapeutic options at advanced stages. Therefore, a better understanding of the biology underlying OVC is essential for the development of effective strategies for early detection and targeted therapies. Nuclear receptors (NRs) are a superfamily of 48 transcription factors that, upon binding to their specific ligand, play a vital role in regulating various cellular processes such as growth, development, metabolism, and homeostasis. Accumulating evidence from several studies has shown that their aberrant expression is associated with multiple human diseases. Numerous NRs have shown significant effects in the development of various cancers, including OVC. This review summarizes the recent findings on the role of NRs in OVC, as well as their potential as prognostic and therapeutic markers. Further, the basic structure and signaling mechanism of NRs have also been discussed briefly. Moreover, this review highlights their cellular and molecular mechanisms in chemoresistance and chemosensitization. Further, the clinical trials targeting NRs for the treatment of OVC have also been discussed.
Collapse
Affiliation(s)
- Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| | - Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University of Singapore (NUS) Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| |
Collapse
|
2
|
Ding J, Sun J, Ma RQ, Zheng K, Han YN. Low expression of NR1D1 and NR2E3 is associated with advanced features of retinoblastoma. Int Ophthalmol 2024; 44:133. [PMID: 38480634 PMCID: PMC10937757 DOI: 10.1007/s10792-024-03055-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 02/16/2024] [Indexed: 03/17/2024]
Abstract
PURPOSE To investigate the expression of nuclear receptor subfamily 1 group D member 1 (NR1D1) and nuclear receptor subfamily 2 group E Member 3 (NR2E3) in retinoblastoma (RB) and their correlation with the clinical and pathological features of RB. METHODS Immunohistochemical (IHC) assays were performed to detect and evaluate the expression levels of NR1D1 and NR2E3 in paraffin-embedded tissue samples. The relationship between the expression levels and clinicopathological characteristics of RB patients was analyzed using the χ2 test or Fisher exact test. RESULTS A total of 51 RB patients were involved in this research. The expression levels of NR1D1 (P = 0.004) and NR2E3 (P = 0.024) were significantly lower in RB tumor tissues than in normal retina. The expression levels of NR1D1 and NR2E3 were less positive in RB patients with advanced stages (P = 0.007, P = 0.015), choroidal infiltration (P = 0.003, P = 0.029), and optic nerve infiltration (P = 0.036, P = 0.003). In addition, a low expression level of NR2E3 was associated with high-risk pathology (P = 0.025) and necrosis (P = 0.035) of RB tissues. CONCLUSION The expression levels of NR1D1 and NR2E3 were decreased in RB and closely associated with the clinical stage and high invasion of the disease. These findings provide new insights into the mechanism of RB progression and suggest that NR1D1 and NR2E3 could be potential targets for treatment strategies.
Collapse
Affiliation(s)
- Jie Ding
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Jie Sun
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Rui-Qi Ma
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Ke Zheng
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, 200031, China
| | - Yi-Nan Han
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, 200031, China.
| |
Collapse
|
3
|
Wang Y, Guo H, He F. Circadian disruption: from mouse models to molecular mechanisms and cancer therapeutic targets. Cancer Metastasis Rev 2023; 42:297-322. [PMID: 36513953 DOI: 10.1007/s10555-022-10072-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022]
Abstract
The circadian clock is a timekeeping system for numerous biological rhythms that contribute to the regulation of numerous homeostatic processes in humans. Disruption of circadian rhythms influences physiology and behavior and is associated with adverse health outcomes, especially cancer. However, the underlying molecular mechanisms of circadian disruption-associated cancer initiation and development remain unclear. It is essential to construct good circadian disruption models to uncover and validate the detailed molecular clock framework of circadian disruption in cancer development and progression. Mouse models are the most widely used in circadian studies due to their relatively small size, fast reproduction cycle, easy genome manipulation, and economic practicality. Here, we reviewed the current mouse models of circadian disruption, including suprachiasmatic nuclei destruction, genetic engineering, light disruption, sleep deprivation, and other lifestyle factors in our understanding of the crosstalk between circadian rhythms and oncogenic signaling, as well as the molecular mechanisms of circadian disruption that promotes cancer growth. We focused on the discoveries made with the nocturnal mouse, diurnal human being, and cell culture and provided several circadian rhythm-based cancer therapeutic strategies.
Collapse
Affiliation(s)
- Yu Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haidong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Feng He
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
4
|
Posttranslational Modifications of Rev-Erb α Protein and Abnormal Inflammatory Response in Gastric Cancer. JOURNAL OF ONCOLOGY 2022; 2022:6291656. [PMID: 36618075 PMCID: PMC9812611 DOI: 10.1155/2022/6291656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 11/19/2022] [Accepted: 12/12/2022] [Indexed: 12/30/2022]
Abstract
We reported that Rev-erbα, a transcriptional repressor, is reduced in human gastric cancer and that it inhibits glycolysis in cultured gastric cancer cells. However, it is unclear whether Rev-erbα undergoes posttranslational modifications in gastric cancer. Here, we determined levels of Rev-erbα and its posttranslational modifications including phosphorylation, SUMOylation, and ubiquitination in N-methyl-N-nitrosourea (MNU)/Helicobacter pylori (H. pylori)-induced gastric cancer in mice and in cultured human gastric cancer cells. Administration of MNU plus H. pylori infection successfully induced gastric tumor in C57BL/6J mice. MNU/H. pylori decreased the levels of Rev-erbα in gastric tumor tissues of mice accompanied by an increase in the level of lactic acid. Rev-erbα protein SUMOylation and ubiquitination modifications were significantly increased, whereas phosphorylation was unchanged, in gastric cancer cells line BGC-823 and MNU/H. pylori-induced mouse gastric cancer tissues. Using human gastric cancer tissues, we found that Rev-erbα was specifically reduced in mucosal epithelial cells in gastric tissue. Cytokine levels were increased in MNU/H. pylori-exposed mice compared with control mice. Similarly, the levels of IL-6 IL-10, TNF-α, and VEGF were higher in the BGC-823 cell line compared with GES-1 cells. IL-6 and IL-1 incubation did not affect Rev-erbα levels in BGC-823 cells. Furthermore, Rev-erbα was recruited on the promoters of these cytokine genes, which suppressed their expression. Conclusively, Rev-erbα SUMOylation and subsequent ubiquitination may contribute to its protein reduction, which leads to increased glycolysis and abnormal inflammatory responses during the development of gastric cancer. Targeting Rev-erbα and its SUMOylation represents promising approaches for prevention and management of gastric cancer.
Collapse
|
5
|
The Expression of PPAR Pathway-Related Genes Can Better Predict the Prognosis of Patients with Colon Adenocarcinoma. PPAR Res 2022; 2022:1285083. [PMID: 35481240 PMCID: PMC9038426 DOI: 10.1155/2022/1285083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 12/03/2022] Open
Abstract
The postoperative survival time and quality of life of patients with colon adenocarcinoma (COAD) varies widely. In order to make accurate decisions after surgery, clinicians need to distinguish patients with different prognostic trends. However, we still lack effective methods to predict the prognosis of COAD patients. Accumulated evidences indicated that the inhibition of peroxisome proliferator-activated receptors (PPARs) and a portion of their target genes were associated with the development of COAD. Our study found that the expression of several PPAR pathway-related genes were linked to the prognosis of COAD patients. Therefore, we developed a scoring system (named PPAR-Riskscore) that can predict patients' outcomes. PPAR-Riskscore was constructed by univariate Cox regression based on the expression of 4 genes (NR1D1, ILK, TNFRSF1A, and REN) in tumor tissues. Compared to typical TNM grading systems, PPAR-Riskscore has better predictive accuracy and sensitivity. The reliability of the system was tested on six external validation datasets. Furthermore, PPAR-Riskscore was able to evaluate the immune cell infiltration and chemotherapy sensitivity of each tumor sample. We also combined PPAR-Riskscore and clinical features to create a nomogram with greater clinical utility. The nomogram can help clinicians make precise treatment decisions regarding the possible long-term survival of patients after surgery.
Collapse
|
6
|
Németh V, Horváth S, Kinyó Á, Gyulai R, Lengyel Z. Expression Patterns of Clock Gene mRNAs and Clock Proteins in Human Psoriatic Skin Samples. Int J Mol Sci 2021; 23:121. [PMID: 35008548 PMCID: PMC8745255 DOI: 10.3390/ijms23010121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a systemic inflammatory skin disorder that can be associated with sleep disturbance and negatively influence the daily rhythm. The link between the pathomechanism of psoriasis and the circadian rhythm has been suggested by several previous studies. However, there are insufficient data on altered clock mechanisms in psoriasis to prove these theories. Therefore, we investigated the expression of the core clock genes in human psoriatic lesional and non-lesional skin and in human adult low calcium temperature (HaCaT) keratinocytes after stimulation with pro-inflammatory cytokines. Furthermore, we examined the clock proteins in skin biopsies from psoriatic patients by immunohistochemistry. We found that the clock gene transcripts were elevated in psoriatic lesions, especially in non-lesional psoriatic areas, except for rev-erbα, which was consistently downregulated in the psoriatic samples. In addition, the REV-ERBα protein showed a different epidermal distribution in non-lesional skin than in healthy skin. In cytokine-treated HaCaT cells, changes in the amplitude of the bmal1, cry1, rev-erbα and per1 mRNA oscillation were observed, especially after TNFα stimulation. In conclusion, in our study a perturbation of clock gene transcripts was observed in uninvolved and lesional psoriatic areas compared to healthy skin. These alterations may serve as therapeutic targets and facilitate the development of chronotherapeutic strategies in the future.
Collapse
Affiliation(s)
| | | | | | | | - Zsuzsanna Lengyel
- Department of Dermatology, Venereology and Oncodermatology, Medical School, University of Pécs, H-7632 Pecs, Hungary; (V.N.); (S.H.); (Á.K.); (R.G.)
| |
Collapse
|
7
|
Wang X, Jia R, Chen K, Wang J, Jiang K, Wang Z. RORα and REV-ERBα are Associated With Clinicopathological Parameters and are Independent Biomarkers of Prognosis in Gastric Cancer. Technol Cancer Res Treat 2021; 20:15330338211039670. [PMID: 34931925 PMCID: PMC8721360 DOI: 10.1177/15330338211039670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Retinoid-related orphan receptor alpha (RORα) and nuclear receptor subfamily 1 group D member 1 (REV-ERBα) play critical roles in many human cancers. Whether RORα and REV-ERBα expression levels are associated with clinical characteristics are poorly understood, and they may be independent predictors of overall survival (OS) and progression-free survival (PFS) in gastric cancer (GC). This study aimed to investigate the correlation of RORα and REV-ERBα expression levels with clinicopathological parameters, OS, and PFS in GC. Immunohistochemistry and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) were employed to assess the expression levels of RORα and REV-ERBα, which were downregulated in GC tissues compared with normal gastric tissues (P < .001; P < .001) and were associated with several clinicopathological parameters, including histological grade (P = .032; P < .001), preoperative carcinoembryonic antigen (CEA) levels (P = .004; P < .001), and tumor-node-metastasis (TNM) stage (P = .015; P < .001). Additionally, low RORα and REV-ERBα expression levels were associated with poor OS and PFS in GC patients, respectively (P < .001; P = .001). Furthermore, univariate Cox regression model analysis showed that histological grade (P < .001; P < .001), preoperative CEA levels (P < .001; P = .001), TNM stage (P < .001; P < .001), lymph node metastasis (P = .002; P = .002), RORα expression levels (P = .001; P < .001), and REV-ERBα expression levels (P < .001; P = .001) were associated with OS and PFS in GC. Multivariate Cox regression model analysis indicated that RORα expression levels and REV-ERBα expression levels are independent factors of OS and PFS in GC. Besides, RORα and REV-ERBα expression may be positively correlated (χ2 = 6.835; P = .009), and GC patients with both high RORα and REV-ERBα expression levels had the best prognosis. In conclusion, RORα and REV-ERBα may coparticipate in tumor activities and show potential to estimate the prognosis of GC.
Collapse
Affiliation(s)
- Xiaoshan Wang
- 36639The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Ru Jia
- 36639The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Ke Chen
- 36639The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jingjing Wang
- 36639The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Kai Jiang
- 36639The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Zhengguang Wang
- 36639The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| |
Collapse
|
8
|
Liu Q, Xu L, Wu M, Zhou Y, Yang J, Huang C, Xu T, Li J, Zhang L. Rev-erbα exacerbates hepatic steatosis in alcoholic liver diseases through regulating autophagy. Cell Biosci 2021; 11:129. [PMID: 34246287 PMCID: PMC8272374 DOI: 10.1186/s13578-021-00622-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/31/2021] [Indexed: 12/20/2022] Open
Abstract
Background and aims Alcoholic fatty liver (AFL) is a liver disease caused by long-term excessive drinking and is characterized by hepatic steatosis. Understanding the regulatory mechanism of steatosis is essential for the treatment of AFL. Rev-erbα is a member of the Rev-erbs family of nuclear receptors, playing an important role in regulating lipid metabolism. However, its functional role in AFL and its underlying mechanism remains unclear. Results Rev-erbα was upregulated in the liver of EtOH-fed mice and EtOH-treated L-02 cells. Further, Rev-erbα activation exacerbates steatosis in L-02 cells. Inhibition/downexpression of Rev-erbα improved steatosis. Mechanistically, autophagy activity was inhibited in vivo and vitro. Interestingly, inhibition/downexpression of Rev-erbα enhanced autophagy. Furthermore, silencing of Rev-erbα up-regulated the nuclear expression of Bmal1. Autophagy activity was inhibited and steatosis was deteriorated after EtOH-treated L-02 cells were cotransfected with Rev-erbα shRNA and Bmal1 siRNA. Conclusions Rev-erbα induces liver steatosis, which promotes the progression of AFL. Our study reveals a novel steatosis regulatory mechanism in AFL and suggest that Rev-erbα might be a potential therapeutic target for AFL. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00622-4.
Collapse
Affiliation(s)
- Qingxue Liu
- School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Lei Xu
- School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Meifei Wu
- School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Yiwen Zhou
- School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Junfa Yang
- School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Cheng Huang
- School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Tao Xu
- School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Jun Li
- School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People's Republic of China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China
| | - Lei Zhang
- School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, Anhui, China. .,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, 230032, People's Republic of China. .,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, 230032, China.
| |
Collapse
|
9
|
Shao R, Yang Y, Fan K, Wu X, Jiang R, Tang L, Li L, Shen Y, Liu G, Zhang L. REV-ERBα Agonist GSK4112 attenuates Fas-induced Acute Hepatic Damage in Mice. Int J Med Sci 2021; 18:3831-3838. [PMID: 34790059 PMCID: PMC8579287 DOI: 10.7150/ijms.52011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/07/2021] [Indexed: 12/04/2022] Open
Abstract
Fas-induced apoptosis is a central mechanism of hepatocyte damage during acute and chronic hepatic disorders. Increasing evidence suggests that circadian clock plays critical roles in the regulation of cell fates. In the present study, the potential significance of REV-ERBα, a core ingredient of circadian clock, in Fas-induced acute liver injury has been investigated. The anti-Fas antibody Jo2 was injected intraperitoneally in mice to induce acute liver injury and the REV-ERBα agonist GSK4112 was administered. The results indicated that treatment of GSK4112 decreased the level of plasma ALT and AST, attenuated the liver histological changes, and promoted the survival rate in Jo2-insulted mice. Treatment with GSK4112 also downregulated the activities of caspase-3 and caspase-8, suppressed hepatocyte apoptosis. In addition, treatment with GSK4112 decreased the level of Fas and enhanced the phosphorylation of Akt. In conclusion, treatment with GSK4112 alleviated Fas-induced apoptotic liver damage in mice, suggesting that REV-ERBα agonist might have potential value in pharmacological intervention of Fas-associated liver injury.
Collapse
Affiliation(s)
- Ruyue Shao
- Clinical Medical School, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China.,Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing 401331, China
| | - Yongqiang Yang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Kerui Fan
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Xicheng Wu
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Rong Jiang
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Li Tang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Longjiang Li
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Yi Shen
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Gang Liu
- Department of Emergency, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Li Zhang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
10
|
Wang S, Li F, Lin Y, Wu B. Targeting REV-ERBα for therapeutic purposes: promises and challenges. Theranostics 2020; 10:4168-4182. [PMID: 32226546 PMCID: PMC7086371 DOI: 10.7150/thno.43834] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/08/2020] [Indexed: 12/12/2022] Open
Abstract
REV-ERBα (NR1D1) is a circadian clock component that functions as a transcriptional repressor. Due to its role in direct modulation of metabolic genes, REV-ERBα is regarded as an integrator of cell metabolism with circadian clock. Accordingly, REV-ERBα is first proposed as a drug target for treating sleep disorders and metabolic syndromes (e.g., dyslipidaemia, hyperglycaemia and obesity). Recent years of studies uncover a rather broad role of REV-ERBα in pathological conditions including local inflammatory diseases, heart failure and cancers. Moreover, REV-ERBα is involved in regulation of circadian drug metabolism that has implications in chronopharmacology. In the meantime, recent years have witnessed discovery of an array of new REV-ERBα ligands most of which have pharmacological activities in vivo. In this article, we review the regulatory role of REV-ERBα in various types of diseases and discuss the underlying mechanisms. We also describe the newly discovered ligands and the old ones together with their targeting potential. Despite well-established pharmacological effects of REV-ERBα ligands in animals (preclinical studies), no progress has been made regarding their translation to clinical trials. This implies certain challenges associated with drug development of REV-ERBα ligands. In particular, we discuss the potential challenges related to drug safety (or adverse effects) and bioavailability. For new drug development, it is advocated that REV-ERBα should be targeted to treat local diseases and a targeting drug should be locally distributed, avoiding the adverse effects on other tissues.
Collapse
Affiliation(s)
- Shuai Wang
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
- Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, Guangzhou, 510632, China
| | - Feng Li
- Guangzhou Jinan Biomedicine Research and Development Center, Jinan University, Guangzhou, 510632, China
| | - Yanke Lin
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Baojian Wu
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
11
|
Tao L, Yu H, Liang R, Jia R, Wang J, Jiang K, Wang Z. Rev-erbα inhibits proliferation by reducing glycolytic flux and pentose phosphate pathway in human gastric cancer cells. Oncogenesis 2019; 8:57. [PMID: 31591390 PMCID: PMC6779746 DOI: 10.1038/s41389-019-0168-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Rev-erbα is a nuclear receptor, which regulates circadian rhythm, inflammatory responses and lipid metabolism. We previously showed Rev-erbα reduction in human gastric cancer, which is associated with TMN stages and poor prognosis. We hypothesized that Rev-erbα modulates proliferation via glycolytic flux and the pentose phosphate pathway (PPP) in gastric cancer. Knockdown of Rev-erbα significantly increased proliferation as well as glycolytic flux and the PPP in human gastric cancer cells. These effects were reduced by a Rev-erbα agonist GSK4112 in a dose-dependent manner. Furthermore, Rev-erbα was recruited on the promoters of PFKFB3 and G6PD genes, thereby inhibiting their gene transcription. GSK4112 treatment reduced PFKFB3 and G6PD gene expression, which was not affected by BMAL1 knockdown. Pharmacological inhibition of glycolysis and the PPP using corresponding PFKFB3 and G6PD inhibitors attenuated Rev-erbα knockdown-induced proliferation in gastric cancer cells. GSK4112 treatment was not able to reduce proliferation in SGC-7901 overexpressing both PFKFB3 and G6PD genes. Both PFKFB3 and G6PD were overexpressed in patients with gastric cancer, and positively correlated with the TMN stages. The PPP and glycolysis were enhanced in gastric cancer tissues of patients with low expression of Rev-erbα compared to the patients with high expression of Rev-erbα. In conclusion, Rev-erbα reduction causes gastric cancer progression by augmenting the PPP and glycolysis.
Collapse
Affiliation(s)
- Linlin Tao
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.,Division of Infectious Diseases, Department of Infectious Diseases, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Haoyuan Yu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Rui Liang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Ru Jia
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jingjing Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Kai Jiang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Zhengguang Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
12
|
Sulli G, Lam MTY, Panda S. Interplay between Circadian Clock and Cancer: New Frontiers for Cancer Treatment. Trends Cancer 2019; 5:475-494. [PMID: 31421905 DOI: 10.1016/j.trecan.2019.07.002] [Citation(s) in RCA: 293] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 12/23/2022]
Abstract
Circadian clocks constitute the evolutionary molecular machinery that dictates the temporal regulation of physiology to maintain homeostasis. Disruption of the circadian rhythm plays a key role in tumorigenesis and facilitates the establishment of cancer hallmarks. Conversely, oncogenic processes directly weaken circadian rhythms. Pharmacological modulation of core clock genes is a new approach in cancer therapy. The integration of circadian biology into cancer research offers new options for making cancer treatment more effective, encompassing the prevention, diagnosis, and treatment of this devastating disease. This review highlights the role of the circadian clock in tumorigenesis and cancer hallmarks, and discusses how pharmacological modulation of circadian clock genes can lead to new therapeutic options.
Collapse
Affiliation(s)
- Gabriele Sulli
- The Salk Institute for Biological Studies, La Jolla, CA, USA; Department of Medicine, Division of Regenerative Medicine, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA; Scintillon Institute, San Diego, CA 92121, USA.
| | - Michael Tun Yin Lam
- The Salk Institute for Biological Studies, La Jolla, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, 9300 Campus Point Drive, La Jolla, CA 92037, USA
| | | |
Collapse
|