1
|
Jiang S, Li C, Liu D, Zeng F, Wei W, He T, Yang W. Role, mechanisms and effects of Radix Bupleuri in anti‑breast cancer (Review). Oncol Lett 2025; 29:166. [PMID: 39963320 PMCID: PMC11831725 DOI: 10.3892/ol.2025.14912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/30/2024] [Indexed: 02/20/2025] Open
Abstract
The prevalence of breast cancer among women has led to a growing need for innovative anti-breast cancer medications and an in-depth investigation into their molecular mechanisms of action, both of which are essential tactics in clinical intervention. In the clinical practice of Traditional Chinese Medicine, Radix Bupleuri and its active components have shown promise as potential anti-breast cancer agents due to their ability to target multiple pathways, exhibit synergistic effects and reduce toxicity. These compounds are considered to enhance the prognosis of patients with cancer, prolong survival and combat chemotherapy resistance. The present review aimed to delve into the anti-breast cancer properties of Radix Bupleuri and its active ingredients, highlighting their mechanisms, such as inhibition of cell proliferation, promotion of apoptosis, metastasis prevention, microenvironment improvement and synergy with certain chemotherapeutic agents. These findings may provide a scientific rationale for combining Radix Bupleuri and its active components with traditional chemotherapy agents for the management of breast cancer.
Collapse
Affiliation(s)
- Shiting Jiang
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chengxia Li
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Dan Liu
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wenli Wei
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Tao He
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wenli Yang
- Institute for Cancer Medicine, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
2
|
Audzeyenka I, Piwkowska A, Rogacka D, Makowski M, Kowalik M. Biological Evaluation of a Rhodium(III) Bipyridylsulfonamide Complex: Effects on Mitochondrial Dynamics and Cytoskeletal Remodeling in Breast Cancer Cells. J Med Chem 2024; 67:21364-21379. [PMID: 39576967 DOI: 10.1021/acs.jmedchem.4c02284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Rhodium(III) complexes have gained attention for their anticancer potential. In this study, we investigated a rhodium(III) bipyridylsulfonamide complex (2) and its ligand (L) for their effects on breast cancer (SKBr3) and noncancerous mammary cells (HB2). Both compounds significantly reduced oxidative phosphorylation (OXPHOS) and mitochondrial function in SKBr3 cells while sparing HB2 cells. Compound 2 also increased glycolysis in both lines, suggesting a metabolic shift. Mitochondrial size and shape were altered, particularly in SKBr3 cells. Additionally, both compounds reduced cancer cell migration by disrupting actin cytoskeleton organization and the Rac1/VASP signaling pathway. These findings suggest that the rhodium(III) bipyridylsulfonamide complex selectively impairs mitochondrial dynamics and cell migration in cancer cells while sparing healthy cells, providing insight into its mechanism of action and toward its use as targeted anticancer therapy. This study lays the groundwork for future in vivo studies and further optimization of these metal-based therapeutics for clinical applications.
Collapse
Affiliation(s)
- Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, W. Stwosza 63, 80-308 Gdansk, Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, W. Stwosza 63, 80-308 Gdansk, Poland
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, W. Stwosza 63, 80-308 Gdansk, Poland
| | - Mariusz Makowski
- Faculty of Chemistry, Department of Bioinorganic Chemistry, University of Gdańsk, W. Stwosza 63, 80-308 Gdańsk, Poland
| | - Mateusz Kowalik
- Faculty of Chemistry, Department of Bioinorganic Chemistry, University of Gdańsk, W. Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
3
|
Hemida AS, Abdelaziz RA, Abd El-Wahed MM, Asaad NY, Serag El-Dien MM, Elshahat Ali HA. Significance of RCC2, Rac1 and p53 Expression in Breast Infiltrating Ductal Carcinoma; An Immunohistochemical Study. IRANIAN JOURNAL OF PATHOLOGY 2023; 19:177-192. [PMID: 39118792 PMCID: PMC11304461 DOI: 10.30699/ijp.2024.2014367.3198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/01/2023] [Indexed: 08/10/2024]
Abstract
Background & Objective The regulator of chromosome condensation 2 (RCC2) and RAS-related C3 botulinum toxin substrate 1 (Rac1) have been implicated in the promotion of breast cancer cell proliferation and migration. The signaling pathway involving p53/RCC2/Rac1 has been proposed to contribute to the regulation of colon cancer metastasis. However, until now, this pathway has not been thoroughly investigated in breast cancer. This study seeks to explore the influence of immunohistochemical expression and the correlation among RCC2, Rac1, and p53 in breast infiltrating ductal carcinoma (IDC). Methods Immunostaining was performed on 120 breast IDC specimens using RCC2, Rac1, and p53 antibodies. Statistical analyses were conducted to examine the correlations between these antibodies. Results A Positive expression of RCC2, Rac1, and p53 was observed in 116 (96.7%), 120 (100%), and 33 (27.5%) of the breast cancer cases, respectively. RCC2, Rac1, and p53 demonstrated association with poor prognostic parameters such as frequent mitoses, high Ki-67 status, positive lymphovascular invasion (LVI), and advanced tumor stage. A highly significant direct correlation was found between each immunohistochemical marker and the other two markers. Shorter overall survival was linked to multifocal tumors (P=0.017), advanced tumor stage (T3) (P=0.010), Luminal B subtype (P=0.015), progressive disease (P=0.003), positive Her2neu status (P=0.008), and metastasis to distant organs (P<0.001). However, RCC2, Rac1, and p53 did not exhibit a significant association with overall survival. Conclusion The high expression levels of RCC2, Rac1, and p53 in breast IDC suggest their potential role in tumor behavior. The association of RCC2 and Rac1 with poor prognostic parameters may serve as predictive indicators for aggressive tumors, thus implying that targeted therapy could be beneficial in the treatment of breast cancer.
Collapse
Affiliation(s)
- Aiat Shaban Hemida
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt
| | - Reham Ahmed Abdelaziz
- Department of Clinical Oncology& Nuclear Medicine, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt
| | | | - Nancy Yousef Asaad
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt
| | | | - Hend Ali Elshahat Ali
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt
| |
Collapse
|
4
|
Lu J, Li H, Yu D, Zhao P, Liu Y. Heat stress inhibits the proliferation and differentiation of myoblasts and is associated with damage to mitochondria. Front Cell Dev Biol 2023; 11:1171506. [PMID: 37113771 PMCID: PMC10126414 DOI: 10.3389/fcell.2023.1171506] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction: Heat stress is harmful to the health of humans and animals, more and more common, as a consequence of global warming, while the mechanism that heat stress modulates skeletal development remains unknown. Hence, we conducted a model of heat stress in vitro. Methods: We used Hu sheep myoblasts as the research object, real-time quantitative PCR (RT-qPCR) and western blot (WB) were conducted to detect the expression of mRNA and protein in heat-stressed myoblasts. The would-healing assay was used to detect the migration of myoblasts. The mitochondria were observed by a transmission electron microscope. Results: mRNA and protein expression of HSP60 was significantly enriched in the heat-stressed myoblasts during proliferation and differentiation (p < 0.05). In our study, we indicated that heat stress enriched the intracellular ROS of the myoblasts (p < 0.001), leading to an increase in autophagy in the myoblasts to induce apoptosis. The results demonstrated that the protein expression of LC3B-1 and BCL-2 was significantly increased in myoblasts under heat stress during proliferation and differentiation (p < 0.05). Additionally, heat stress inhibited mitochondrial biogenesis and function and reduced the mitochondrial membrane potential and downregulated the expression of mtCo2, mtNd1 and DNM1L (p < 0.05) in myoblasts during proliferation and differentiation. Consequently, heat stress inhibited the proliferation and differentiation of the myoblasts, in accordance with the downregulation of the expression of PAX7, MYOD, MYF5, MYOG and MYHC (p < 0.05). Moreover, heat stress also inhibited the cell migration of the myoblasts. Discussion: This work demonstrates that heat stress inhibits proliferation and differentiation, and accelerates apoptosis by impairing mitochondrial function and promoting autophagy, which provides a mechanism to understand heat stress affects the development of the skeletal muscle.
Collapse
Affiliation(s)
- Jiawei Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Huixia Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Huixia Li, ; Debing Yu,
| | - Debing Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Xizang, China
- *Correspondence: Huixia Li, ; Debing Yu,
| | - Peng Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Preclinical Efficacy and Toxicology Evaluation of RAC1 Inhibitor 1A-116 in Human Glioblastoma Models. Cancers (Basel) 2022; 14:cancers14194810. [PMID: 36230732 PMCID: PMC9562863 DOI: 10.3390/cancers14194810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Malignant gliomas are the most common primary central nervous system tumors in adults. Currently, this disease is associated with poor prognosis and is virtually incurable. There is a need to find novel targets and treatments to improve patient survival. This study shows the preclinical evaluation of 1A-116, a Rac1 inhibitor that showed in vitro antitumor activity on glioma cells. We also evaluated 1A-116 in vivo, showing a favorable toxicological profile and antitumor efficacy in an intracranial mouse tumor model. Altogether, our study provides important evidence of 1A-116 as a signal transduction-based precision therapy for glioma and also increases the evidence of Rac1 as a key molecular target in cancer. Abstract Malignant gliomas are the most common primary central nervous system tumor in adults. Despite current therapeutics, these tumors are associated with poor prognosis and a median survival of 16 to 19 months. This highlights the need for innovative treatments for this incurable disease. Rac1 has long been associated with tumor progression and plays a key role in glioma’s infiltrative and invasive nature. The aim of this study is to evaluate the 1A-116 molecule, a Rac1 inhibitor, as targeted therapy for this aggressive disease. We found that targeting Rac1 inhibits cell proliferation and cell cycle progression using different in vitro human glioblastoma models. Additionally, we evaluated 1A-116 in vivo, showing a favorable toxicological profile. Using in silico tools, 1A-116 is also predicted to penetrate the blood–brain barrier and present a favorable metabolic fate. In line with these results, 1A-116 i.p daily treatment resulted in a dose-dependent antitumor effect in an orthotopic IDH-wt glioma model. Altogether, our study provides a strong potential for clinical translation of 1A-116 as a signal transduction-based precision therapy for glioma and also increases the evidence of Rac1 as a key molecular target.
Collapse
|
6
|
Zhang Y, Zhang H, Han Z, Wang X, Li X, Yuan P, Ji S, Liu Q. A‑kinase interacting protein 1 regulates the cell proliferation, invasion, migration and angiogenesis of clear cell renal cell carcinoma cells and affects the ERK/c‑Myc signaling pathway by binding to Rac1. Exp Ther Med 2022; 24:558. [PMID: 35978938 PMCID: PMC9366277 DOI: 10.3892/etm.2022.11489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/25/2022] [Indexed: 11/06/2022] Open
Abstract
A-kinase interacting protein 1 (AKIP1) has previously been demonstrated to be overexpressed in clear cell renal cell carcinoma (ccRCC) tissues and is associated with patient prognosis. The aim of the present study was to explore whether AKIP1 can affect the proliferation, invasion, migration and angiogenesis of ccRCC cells via its interaction with Rac1. Furthermore, the influence of AKIP1 and therefore Rac1 on the expression of the downstream ERK/cellular (c)-Myc signaling pathway was explored. The interaction between AKIP1 and Rac1 was determined using co-immunoprecipitation. The mRNA and protein expression levels of AKIP1 and Rac1 in normal renal epithelial cell lines and ccRCC cell lines were detected using reverse transcription-quantitative PCR (RT-qPCR) and western blotting, respectively. The transfection efficiency of small interfering RNA-AKIP1 and the Rac1 overexpression vector were also confirmed using RT-qPCR and western blotting. The viability, proliferation, invasion and migration of ccRCC cells following transfection were analyzed using the Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine staining, Transwell and wound healing assays, respectively. The tube formation ability of HUVECs was assessed using the tube formation assay. The protein expression levels of proliferation, invasion, migration and tube-formation-associated proteins as well as proteins associated with the ERK/c-Myc signaling pathway, were detected via western blotting. The results demonstrated that AKIP1 expression levels were increased in ccRCC cell lines. AKIP1 knockdown inhibited the proliferation, invasion and migration of ccRCC cells and HUVEC tube-formation. In addition, AKIP1 was demonstrated to bind to Rac1 in ccRCC cells and AKIP1 downregulation inhibited Rac1 expression. Furthermore, Rac1 overexpression reversed the effects of AKIP1 knockdown on ccRCC cells. AKIP1 knockdown also suppressed the ERK/c-Myc signaling pathway, which was reversed by Rac1 overexpression. In conclusion, AKIP1 knockdown potentially suppressed the proliferation, invasion, migration and angiogenesis of ccRCC cells and inhibited the ERK/c-Myc signaling pathway by binding to Rac1.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Urology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Haijian Zhang
- Department of Urology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Zhixing Han
- Department of Urology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Xudong Wang
- Department of Urology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Xuyu Li
- Department of Urology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Pengfei Yuan
- Department of Urology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Shiqi Ji
- Department of Urology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| | - Qingjun Liu
- Department of Urology, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P.R. China
| |
Collapse
|
7
|
MicroRNA-98-5p Inhibits IL-13-Induced Proliferation and Migration of Human Airway Smooth Muscle Cells by Targeting RAC1. Inflammation 2022; 45:1548-1558. [PMID: 35304668 DOI: 10.1007/s10753-022-01640-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/05/2022]
Abstract
The dysfunction of airway smooth muscle cells (ASMCs) is one of the key factors in the pathogenesis of asthma. How miR-98-5p works in asthma has not been completely elucidated. This work focused on how miR-98-5p functions in the proliferation and migration of human ASMCs treated with interleukin-13 (IL-13). MiR-98-5p expression in plasma of asthmatic patients and IL-13-stimulated ASMCs was probed by quantitative real-time polymerase chain reaction (qRT-PCR). RAS-relevant C3 botulinum toxin substrate 1 (RAC1) protein expression in ASMCs was assessed by Western blot. The growth of ASMCs was measured by cell counting kit-8 (CCK-8) assay and 5-ethynyl-2'-deoxyuridine (EdU) assay. The migration of ASMCs was examined by Transwell assay. Besides, the apoptosis of ASMCs was analyzed by flow cytometry. The targeting relationship between miR-98-5p and RAC1 3'-UTR was verified by a dual-luciferase reporter gene assay. MiR-98-5p expression was reduced in patients' plasma and IL-13-stimulated ASMCs, and RAC1 expression was upregulated in ASMCs treated with IL-13. MiR-98-5p overexpression inhibited IL-13-induced proliferation and migration of ASMCs while promoting the apoptosis. The opposite result was observed after inhibiting miR-98-5p expression. Besides, RAC1 was identified as a direct downstream target of miR-98-5p in ASMCs. The restoration of RAC1 expression counteracted the impacts of miR-98-5p overexpression on IL-13-stimulated proliferation, migration, and apoptosis of ASMCs. MiR-98-5p inhibits IL-13-induced proliferation and migration and accelerates the apoptosis of ASMCs by downregulating RAC1 expression.
Collapse
|
8
|
You JA, Gong Y, Wu Y, Jin L, Chi Q, Sun D. WGCNA, LASSO and SVM Algorithm Revealed RAC1 Correlated M0 Macrophage and the Risk Score to Predict the Survival of Hepatocellular Carcinoma Patients. Front Genet 2022; 12:730920. [PMID: 35493265 PMCID: PMC9044718 DOI: 10.3389/fgene.2021.730920] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
Background: RAC1 is involved in the progression of HCC as a regulator, but its prognostic performance and the imbalance of immune cell infiltration mediated by it are still unclear. We aim to explore the prognostic and immune properties of RAC1 in HCC. Methods: We separately downloaded the data related to HCC from the Cancer Genome Atlas (TCGA) and GEO database. CIBERSORT deconvolution algorithm, weighted gene co-expression network analysis (WGCNA) and LASSO algorithm participate in identifying IRGs and the construction of prognostic signatures. Results: The study discovered that RAC1 expression was linked to the severity of HCC lesions, and that its high expression was linked to a poor prognosis. Cox analysis confirmed that RAC1 is a clinically independent prognostic marker. M0, M1 and M2 macrophages’ abundance are significantly different in HCC. We found 828 IRGs related to macrophage infiltration, and established a novel 11-gene signature with excellent prognostic performance. RAC1-based risk score and M0 macrophage has a good ability to predict overall survival. Conclusion: The immune state of irregular macrophage infiltration may be one of the precursors to carcinogenesis. The RAC1 correlated with M0 macrophage and the risk score to show a good performance to predict the survival of HCC patients.
Collapse
Affiliation(s)
- Ji-An You
- College of Technology, Hubei Engineering University, Xiaogan, China
| | - Yuhan Gong
- Department of Geotechnical Engineering, Wuhan University of Technology, Wuhan, China
| | - Yongzhe Wu
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, China
| | - Libo Jin
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Qingjia Chi
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, China
- *Correspondence: Qingjia Chi, ; Da Sun,
| | - Da Sun
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
- *Correspondence: Qingjia Chi, ; Da Sun,
| |
Collapse
|
9
|
Huang M, Liu H, Zhu L, Li X, Li J, Yang S, Liu D, Song X, Yokota H, Zhang P. Mechanical loading attenuates breast cancer-associated bone metastasis in obese mice by regulating the bone marrow microenvironment. J Cell Physiol 2021; 236:6391-6406. [PMID: 33554336 PMCID: PMC8222149 DOI: 10.1002/jcp.30314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer, a common malignancy for women, preferentially metastasizes to bone and obesity elevates the chance of its progression. While mechanical loading can suppress obesity and tumor-driven osteolysis, its effect on bone-metastasized obese mice has not been investigated. Here, we hypothesized that mechanical loading can lessen obesity-associated bone degradation in tumor-invaded bone by regulating the fate of bone marrow-derived cells. In this study, the effects of mechanical loading in obese mice were evaluated through X-ray imaging, histology, cytology, and molecular analyses. Tumor inoculation to the tibia elevated body fat composition, osteolytic lesions, and tibia destruction, and these pathologic changes were stimulated by the high-fat diet (HFD). However, mechanical loading markedly reduced these changes. It suppressed osteoclastogenesis by downregulating receptor activator of nuclear factor Kappa-B ligand and cathepsin K and promoted osteogenesis, which was associated with the upregulation of OPG and downregulation of C/enhancer-binding protein alpha and proliferator-activated receptor gamma for adipogenic differentiation. Furthermore, it decreased the levels of tumorigenic genes such as Rac1, MMP9, and interleukin 1β. In summary, this study demonstrates that although a HFD aggravates bone metastases associated with breast cancer, mechanical loading significantly protected tumor-invaded bone by regulating the fate of bone marrow-derived cells. The current study suggests that mechanical loading can provide a noninvasive, palliative option for alleviating breast cancer-associated bone metastasis, in particular for obese patients.
Collapse
Affiliation(s)
- Menglu Huang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Hong Liu
- Department of Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Lei Zhu
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Shuang Yang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Xiaomeng Song
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN 46202, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN 46202, USA
- Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University, Tianjin 300052, China
| |
Collapse
|
10
|
Luna-Velez MV, Dijkstra JJ, Heuschkel MA, Smit FP, van de Zande G, Smeets D, Sedelaar JPM, Vermeulen M, Verhaegh GW, Schalken JA. Androgen receptor signalling confers clonogenic and migratory advantages in urothelial cell carcinoma of the bladder. Mol Oncol 2021; 15:1882-1900. [PMID: 33797847 PMCID: PMC8253097 DOI: 10.1002/1878-0261.12957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022] Open
Abstract
Bladder urothelial cell carcinoma (UCC) incidence is about three times higher in men compared with women. There are several indications for the involvement of hormonal factors in the aetiology of UCC. Here, we provide evidence of androgen signalling in UCC progression. Microarray and qPCR analysis revealed that the androgen receptor (AR) mRNA level is upregulated in a subset of UCC cases. In an AR‐positive UCC‐derived cell line model, UM‐UC‐3‐AR, androgen treatment increased clonogenic capacity inducing the formation of big stem cell‐like holoclones, while AR knockdown or treatment with the AR antagonist enzalutamide abrogated this clonogenic advantage. Additionally, blockage of AR signalling reduced the cell migration potential of androgen‐stimulated UM‐UC‐3‐AR cells. These phenotypic changes were accompanied by a rewiring of the transcriptome with almost 300 genes being differentially regulated by androgens, some of which correlated with AR expression in UCC patients in two independent data sets. Our results demonstrate that AR signals in UCC favouring the development of an aggressive phenotype and highlights its potential as a therapeutic target for bladder cancer.
Collapse
Affiliation(s)
- Maria V Luna-Velez
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, the Netherlands
| | - Jelmer J Dijkstra
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, the Netherlands
| | - Marina A Heuschkel
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Guillaume van de Zande
- Department of Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dominique Smeets
- Department of Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - J P Michiel Sedelaar
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University, Nijmegen, the Netherlands
| | - Gerald W Verhaegh
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jack A Schalken
- Department of Urology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
11
|
Hu H, Li C, Zhang H, Wu G, Huang Y. Role of vasodilator-stimulated phosphoprotein in RANKL-differentiated murine macrophage RAW264.7 cells: Modulation of NF-κB, c-Fos and NFATc1 transcription factors. Exp Ther Med 2021; 21:412. [PMID: 33747153 PMCID: PMC7967814 DOI: 10.3892/etm.2021.9856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022] Open
Abstract
Vasodilator-stimulated phosphoprotein (VASP) is essential for osteoclast differentiation, and reduced VASP expression results in depressed osteoclast differentiation. Previously, we demonstrated the importance of VASP and Ras-related C3 botulinum toxin substrate 1 interactions in osteosarcoma cell migration and metastasis using Mg-63 and Saos2 cells. However, the molecular details of the functional role of VASP in cell motility and migration remain to be elucidated. The present study demonstrated that VASP affects the expression of αV-integrin, tartrate-resistant acid phosphatase (TRAP) and lamellipodia protrusion in RAW 264.7 murine macrophage cells. The RAW 264.7 mouse monocyte macrophage cell line was used as an osteoclast precursor. RAW 264.7 cells were treated with 50 ng/ml of receptor activator of nuclear factor κ-Β ligand (RANKL) in order to induce cell differentiation (osteoclastogenesis). Small interfering RNA (siRNA) was used to silence VASP, and RT-PCR and western blotting were used to determine the expression for genes and proteins, respectively. TRAP staining as a histochemical marker for osteoclast and fluorescent microscopy for lamellipodia protrusion was performed. RANKL treatment significantly increased the gene and protein expression of VASP, αV-integrin and TRAP in RAW 264.7 cells. Silencing of VASP significantly reduced the RANKL-induced expression of αV-integrin, TRAP and lamellipodia protrusion. In addition, knockdown of VASP attenuated RANKL-stimulated activation of NF-κB, c-Fos and nuclear factor of activated T cells cytoplasmic 1 transcription factors, and the phosphorylation of the p65 and IκBα. These results suggest the critical role of VASP in regulating osteoclast differentiation, which should be further explored in osteosarcoma research.
Collapse
Affiliation(s)
- Hao Hu
- Department of Traditional Chinese Traumatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China.,Department of Traditional Chinese Traumatology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430070, P.R. China
| | - Chao Li
- Department of Traditional Chinese Traumatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China.,Department of Traditional Chinese Traumatology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430070, P.R. China
| | - Haitao Zhang
- Department of Traditional Chinese Traumatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China.,Department of Traditional Chinese Traumatology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430070, P.R. China
| | - Gang Wu
- Department of Traditional Chinese Traumatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China.,Department of Traditional Chinese Traumatology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430070, P.R. China
| | - Yong Huang
- Department of Traditional Chinese Traumatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430061, P.R. China.,Department of Traditional Chinese Traumatology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
12
|
Catharanthus roseus L. extract downregulates the expression profile of motility-related genes in highly invasive human breast cancer cell line MDA-MB-231. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00641-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Abstract
Simple Summary Cell migration is an essential process from embryogenesis to cell death. This is tightly regulated by numerous proteins that help in proper functioning of the cell. In diseases like cancer, this process is deregulated and helps in the dissemination of tumor cells from the primary site to secondary sites initiating the process of metastasis. For metastasis to be efficient, cytoskeletal components like actin, myosin, and intermediate filaments and their associated proteins should co-ordinate in an orderly fashion leading to the formation of many cellular protrusions-like lamellipodia and filopodia and invadopodia. Knowledge of this process is the key to control metastasis of cancer cells that leads to death in 90% of the patients. The focus of this review is giving an overall understanding of these process, concentrating on the changes in protein association and regulation and how the tumor cells use it to their advantage. Since the expression of cytoskeletal proteins can be directly related to the degree of malignancy, knowledge about these proteins will provide powerful tools to improve both cancer prognosis and treatment. Abstract Successful metastasis depends on cell invasion, migration, host immune escape, extravasation, and angiogenesis. The process of cell invasion and migration relies on the dynamic changes taking place in the cytoskeletal components; actin, tubulin and intermediate filaments. This is possible due to the plasticity of the cytoskeleton and coordinated action of all the three, is crucial for the process of metastasis from the primary site. Changes in cellular architecture by internal clues will affect the cell functions leading to the formation of different protrusions like lamellipodia, filopodia, and invadopodia that help in cell migration eventually leading to metastasis, which is life threatening than the formation of neoplasms. Understanding the signaling mechanisms involved, will give a better insight of the changes during metastasis, which will eventually help targeting proteins for treatment resulting in reduced mortality and longer survival.
Collapse
|
14
|
Rac1 activation in human breast carcinoma as a prognostic factor associated with therapeutic resistance. Breast Cancer 2020; 27:919-928. [PMID: 32314182 DOI: 10.1007/s12282-020-01091-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND RAS-related C3 botulinus toxin substrate 1 (Rac1) is a molecular switch fluctuating between GDP-bound inactive form (Rac1-GDP) and GTP-bound active form (Rac1-GTP) and involved in diverse function in both normal and malignant cells such as breast carcinoma cells. Although several studies have demonstrated immunolocalization of Rac1 protein in human breast carcinoma tissues, activation status of Rac1 still remains to be elucidated. METHODS We immunolocalized active form of Rac1 (Rac1-GTP) as well as total Rac1 using antibody specific for them in 115 invasive breast carcinoma tissues and correlated with clinicopathological parameters and clinical outcomes. RESULTS Rac1-GTP was frequently immunolocalized in the cytoplasm or cell membrane of breast carcinoma cells and it was positively correlated with Ki-67 labeling index and total Rac1 while negatively correlated with progesterone receptor. On the other hand, immunohistochemical Rac1-GTP status was significantly correlated with increased risk of recurrence and breast cancer-specific mortality of breast cancer patients and multivariate analyses did demonstrate Rac1-GTP as an independent worse prognostic factor for both disease-free and breast cancer-specific survival. In addition, Rac1-GTP was still correlated with worse prognosis in the patients who had received adjuvant chemotherapy or endocrine therapy. CONCLUSION These findings suggested Rac1 activation played pivotal roles in the progression and therapeutic resistance of breast cancers and Rac1 might be an important therapeutic target for improvement of the therapy for breast cancer patients.
Collapse
|
15
|
The Wnt/β-catenin/VASP positive feedback loop drives cell proliferation and migration in breast cancer. Oncogene 2019; 39:2258-2274. [PMID: 31831834 DOI: 10.1038/s41388-019-1145-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022]
Abstract
Previous studies have shown that the main function of VASP is to regulate the cytoskeleton and play an important role in promoting tumor cell metastasis. In this study, we first reveal that VASP is located in the nucleus of breast cancer cells and elucidate a Wnt/β-catenin/VASP positive feedback loop. We identify that VASP is a target gene of Wnt/β-catenin signaling pathway, and activation of Wnt/β-catenin signaling pathway can significantly upregulate VASP protein expression, while upregulated VASP protein can in turn promote translocation of β-catenin and DVL3 proteins into the nucleus. In the nucleus, VASP, DVL3, β-catenin, and TCF4 can form VASP/DVL3/β-catenin/TCF4 protein complex, activating Wnt/β-catenin signaling pathway, and promoting the expression of target genes VASP, c-myc, and cyclin D1. Thus, our study reveals that there is a Wnt/β-catenin/VASP malignant positive feedback loop in breast cancer, which promotes the proliferation and migration of breast cancer cells, and breaking this positive feedback loop may provide new strategy for breast cancer treatment.
Collapse
|
16
|
Hu PC, Li K, Tian YH, Pan WT, Wang Y, Xu XL, He YQ, Gao Y, Wei L, Zhang JW. CREB1/Lin28/miR-638/VASP Interactive Network Drives the Development of Breast Cancer. Int J Biol Sci 2019; 15:2733-2749. [PMID: 31754343 PMCID: PMC6854368 DOI: 10.7150/ijbs.36854] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/25/2019] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is one of the most common malignant tumors worldwide. Metastasis remains the leading cause of death in breast cancer patients. Research on the mechanism of breast cancer metastasis has become a core issue in breast cancer research. Our previous series of studies have shown that VASP, as a key oncogene, plays an important role in the development of various tumors such as breast cancer. In this study, we find that miR-638 can target to inhibit VASP expression, and Lin28 acts as an RNA-binding protein to regulate the processing of miR-638, which inhibits its maturation and promotes the expression of VASP. In addition, we also find that CREB1 acts as a transcription factor that binds to the promoter of Lin28 gene and activates the Lin28/miR-638/VASP pathway. Furthermore, CREB1 can also directly bind to the promoter of VASP, and activate VASP expression, forming a CREB/Lin28/miR-638/VASP interactive network, which plays an important role in promoting cell proliferation and migration in breast cancer. Our study explained the mechanism of CREB1/Lin28/miR-638/VASP network promoting the development of breast cancer, which further elucidated the mechanism of VASP as a key oncogene, and also provided a theoretical basis for expanding new approaches to tumor biotherapy.
Collapse
Affiliation(s)
- Peng-Chao Hu
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University, Wuhan 430071, Hubei, China.,Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China.,Department of oncology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang 441000, Hubei, China
| | - Kai Li
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Yi-Hao Tian
- Department of Anatomy, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Wen-Ting Pan
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Ying Wang
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Xiao-Long Xu
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Yan-Qi He
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Yang Gao
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Lei Wei
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei, China
| | - Jing-Wei Zhang
- Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Wuhan University, Wuhan 430071, Hubei, China
| |
Collapse
|
17
|
Coordination between Rac1 and Rab Proteins: Functional Implications in Health and Disease. Cells 2019; 8:cells8050396. [PMID: 31035701 PMCID: PMC6562727 DOI: 10.3390/cells8050396] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
The small GTPases of the Rho family regulate many aspects of actin dynamics, but are functionally connected to many other cellular processes. Rac1, a member of this family, besides its known function in the regulation of actin cytoskeleton, plays a key role in the production of reactive oxygen species, in gene transcription, in DNA repair, and also has been proven to have specific roles in neurons. This review focuses on the cooperation between Rac1 and Rab proteins, analyzing how the coordination between these GTPases impact on cells and how alterations of their functions lead to disease.
Collapse
|
18
|
Gau D, Veon W, Shroff SG, Roy P. The VASP-profilin1 (Pfn1) interaction is critical for efficient cell migration and is regulated by cell-substrate adhesion in a PKA-dependent manner. J Biol Chem 2019; 294:6972-6985. [PMID: 30814249 DOI: 10.1074/jbc.ra118.005255] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/22/2019] [Indexed: 12/20/2022] Open
Abstract
Dynamic regulation of the actin cytoskeleton is an essential feature of cell motility. Action of Enabled (Ena)/vasodilator-stimulated phosphoprotein (VASP), a family of conserved actin-elongating proteins, is an important aspect of regulation of the actin cytoskeletal architecture at the leading edge that controls membrane protrusion and cell motility. In this study, we performed mutagenesis experiments in overexpression and knockdown-rescue settings to provide, for the first time, direct evidence of the role of the actin-binding protein profilin1 (Pfn1) in VASP-mediated regulation of cell motility. We found that VASP's interaction with Pfn1 is promoted by cell-substrate adhesion and requires down-regulation of PKA activity. Our experimental data further suggest that PKA-mediated Ser137 phosphorylation of Pfn1 potentially negatively regulates the Pfn1-VASP interaction. Finally, Pfn1's ability to be phosphorylated on Ser137 was partly responsible for the anti-migratory action elicited by exposing cells to a cAMP/PKA agonist. On the basis of these findings, we propose a mechanism of adhesion-protrusion coupling in cell motility that involves dynamic regulation of Pfn1 by PKA activity.
Collapse
Affiliation(s)
- David Gau
- From the Department of Bioengineering, University of Pittsburgh and
| | - William Veon
- From the Department of Bioengineering, University of Pittsburgh and
| | - Sanjeev G Shroff
- From the Department of Bioengineering, University of Pittsburgh and
| | - Partha Roy
- From the Department of Bioengineering, University of Pittsburgh and .,the Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| |
Collapse
|
19
|
Yan W, Li SX, Wei M, Gao H. Identification of MMP9 as a novel key gene in mantle cell lymphoma based on bioinformatic analysis and design of cyclic peptides as MMP9 inhibitors based on molecular docking. Oncol Rep 2018; 40:2515-2524. [PMID: 30226602 PMCID: PMC6151885 DOI: 10.3892/or.2018.6682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 09/03/2018] [Indexed: 02/06/2023] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive disease. MCL is associated with poor patient prognosis and limited survival. To identify key genes and explore targeting cyclic peptide inhibitors for the treatment of MCL, we downloaded two gene expression profiles (GSE32018 and GSE9327) from the Gene Expression Omnibus (GEO) database. We screened 84 differentially expressed genes (DEGs). Pathway analysis showed that DEMs were mainly enriched in the ‘Pathway in cancer’, ‘PI3K-Akt signaling pathway’, ‘Cytokine-cytokine receptor interaction’, ‘Rap1 signaling pathway’, ‘NF-κB signaling pathway’ and ‘Leukocyte trans-endothelial migration’. We subsequently constructed a protein-protein interaction (PPI) network of DEGs. In addition, matrix metalloproteinase 9 (MMP9) with a high degree in the PPI network was identified as a hub gene in MCL. Meanwhile in the Molecular Complex Detection (MCODE) analysis, MMP9 was located in the important cluster. Thus, MMP9 can be used as a therapeutic target for MCL and we designed cyclic peptides as MMP9 inhibitors. MMP9 protein structure was gathered from the Protein Data Bank (PDB), with a PDB ID: 1L6J. MMP9 and cyclic peptides were docked using Molecular Operating Environment (MOE) software after structural optimization. It was revealed that cyclic peptide 2 bound deeply in the binding pocket of MMP9 and had interaction with the active-site Zn2+ ion in the catalytic domain. Cyclic peptides 1, 2, 4–6 also displayed potential interaction with active residues of MMP9; thus, these cyclic peptides can serve as potential drug candidates to block MMP9 activity and future studies are warranted to confirm their efficacy.
Collapse
Affiliation(s)
- Wei Yan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Shawn Xiang Li
- International College, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Hua Gao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|