1
|
Li T, Guo D, Xu X, Liu P, Wang P, Zhu Y, Lin L, Qu Y, Liu F, Chu Y, Gao X. MicroRNA‑153 may act as a potential biomarker and prognostic indicator of patients with gastric cancer. Oncol Lett 2023; 26:278. [PMID: 37274464 PMCID: PMC10236043 DOI: 10.3892/ol.2023.13864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 04/05/2023] [Indexed: 06/06/2023] Open
Abstract
MicroRNA (miR/miRNA)-153, as a novel tumor-related miRNA, has been found to be aberrantly expressed in different types of cancer; however, to the best of our knowledge, the role of miR-153 in gastric cancer (GC) remains unclear. The present study demonstrated that miR-153 expression was markedly decreased in GC, including GC cell lines and culture medium, GC tissues, and serum samples, based on reverse transcription-quantitative PCR, and this was further confirmed by fluorescence in situ hybridization. Transfection with miR-153 mimics inhibited proliferation and migration, and promoted apoptosis in GC cells. The serum expression levels of miR-153 were decreased in 59 patients with GC compared with those of 9 healthy controls, and more decreased in advanced GC compared with early-stage GC, suggesting that miR-153 was associated with tumor progression. Furthermore, serum miR-153 was expressed at significantly lower levels in patients with GC with larger tumor size (≥4 cm; P=0.013), poor differentiation and signet histology (P=0.013), lymph node metastasis (P=0.025) and advanced tumor stage (TNM stage III and IV; P=0.048) compared with patients with a smaller tumor size (<4 cm), well and moderate differentiation, no lymph node metastasis, and TNM stage I and II, respectively. In conclusion, the present study revealed that low miR-153 expression was associated with poor prognosis in GC and miR-153 may potentially act as a tumor biomarker and therapeutic target in GC.
Collapse
Affiliation(s)
- Tian Li
- Department of Gastroenterology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong 264200, P.R. China
| | - Dong Guo
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong 264200, P.R. China
| | - Xiaoyan Xu
- Department of Gastroenterology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong 264200, P.R. China
| | - Peng Liu
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong 264200, P.R. China
| | - Ping Wang
- Department of Gastroenterology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong 264200, P.R. China
| | - Yongcun Zhu
- Department of Pathology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong 264200, P.R. China
| | - Lin Lin
- Department of Gastroenterology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong 264200, P.R. China
| | - Yemin Qu
- Department of Central Lab, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong 264200, P.R. China
| | - Feng Liu
- Department of Gastroenterology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong 264200, P.R. China
| | - Yanliu Chu
- Department of Gastroenterology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong 264200, P.R. China
| | - Xiaozhong Gao
- Department of Gastroenterology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong 264200, P.R. China
| |
Collapse
|
2
|
Wang R, Lin L, Han Y, Li Z, Zhen J, Zhang Y, Sun F, Lu Y. Exosome-delivered miR-153 from Trichinella spiralis promotes apoptosis of intestinal epithelial cells by downregulating Bcl2. Vet Res 2023; 54:52. [PMID: 37381058 DOI: 10.1186/s13567-023-01186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Trichinellosis, a helminthic zoonosis, exhibits a cosmopolitan distribution and is a public health concern. In previous studies, it was reported that the exosomes secreted by Trichinella spiralis larvae (TsExos) largely affected cell biological activities. miRNAs, as exosome-delivered cargoes, affect the biological activities of the host by targeting genes. The present study aimed to elucidate the mechanisms by which miRNAs interact with intestinal epithelial cells. First, a miRNA library of TsExos was constructed; then, based on high-throughput miRNA sequencing results, miR-153 and its predicted target genes, namely, Agap2, Bcl2 and Pten, were selected for follow-up studies. The dual-luciferase reporter assays revealed that miR-153 directly targeted Bcl2 and Pten. Furthermore, real-time qPCR and Western blotting revealed that only Bcl2 was downregulated by TsExo-delivered miR-153 in porcine intestinal epithelial cells (IPEC-J2). Bcl2, an important antiapoptotic protein, plays an essential role in cell apoptosis as a common intersecting molecule of various signal transduction pathways. Therefore, we hypothesized that miR-153 derived from TsExos causes cell apoptosis by targeting Bcl2. The results suggested that miR-153 could induce apoptosis, reduce mitochondrial membrane potential, affect cell proliferation, and cause damage and substantial oxidative stress. Furthermore, miR-153 coincubated with IPEC-J2 cells stimulated the accumulation of the proapoptotic proteins Bax and Bad, which belong to the Bcl2 family of proteins, and the apoptosis-implementing proteins Caspase 9 and Caspase 3. Moreover, studies have suggested that miR-153 can promote apoptosis by regulating the MAPK and p53 signalling pathways involved in apoptosis. Thus, exosome-mediated miR-153 delivery secreted by T. spiralis could induce apoptosis and affect the MAPK and p53 signalling pathways by downregulating Bcl2 in IPEC-J2 cells. The study highlights the mechanisms underlying the invasion of T. spiralis larva.
Collapse
Affiliation(s)
- Ruibiao Wang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lihao Lin
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yang Han
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhixin Li
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jingbo Zhen
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuheng Zhang
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Feng Sun
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yixin Lu
- Heilongjiang Provincial Key Laboratory of Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
3
|
Yousefnia S. A comprehensive review on miR-153: Mechanistic and controversial roles of miR-153 in tumorigenicity of cancer cells. Front Oncol 2022; 12:985897. [PMID: 36158686 PMCID: PMC9500380 DOI: 10.3389/fonc.2022.985897] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
miRNAs play a crucial role in regulating genes involved in cancer progression. Recently, miR-153 has been mainly well-known as a tumor suppressive miRNA modulating genes in proliferation, metastasis, EMT, angiogenesis and drug resistance ability of a variety types of cancer. Mechanistic activity of miR-153 in tumorigenicity has not been fully reviewed. This manuscript presents a comprehensive review on the tumor suppressive activity of miR-153 as well as introducing the controversial role of miR-153 as an oncogenic miRNA in cancer. Furthermore, it summarizes all potential non-coding RNAs such as long non-coding RNAs (LncRNAs), transcribed ultra-conserved regions (T-UCRs) and circular RNAs (CircRNAs) targeting and sponging miR-153. Understanding the critical role of miR-153 in cell growth, metastasis, angiogenesis and drug resistance ability of cancer cells, suggests miR-153 as a potential prognostic biomarker for detecting cancer as well as providing a novel treatment strategy to combat with several types of cancer.
Collapse
|
4
|
Shen Y, Lv M, Fang Y, Lu J, Wu Y. LncRNA MNX1-AS1 promotes ovarian cancer process via targeting the miR-744-5p/SOX12 axis. J Ovarian Res 2021; 14:161. [PMID: 34789303 PMCID: PMC8596928 DOI: 10.1186/s13048-021-00910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose Ovarian cancer (OC) is the most common malignancy in women with high mortality. Increasing studies have revealed that long non-coding RNA (lncRNA) MNX1-AS1 has a promoting effect on various cancers. However, the mechanisms of MNX1-AS1 in OC are still unclear. Therefore, this study focused on exploring the mechanisms of MNX1-AS1 in OC. Materials and methods The expression of SOX12 at the protein level was detected by western blot. Cell proliferation was detected by CCK8 assay and colony formation assay. Cell cycle and cell apoptosis were detected by flow cytometry. Wound-healing assay, transwell assay and western blot were used to detect the ability of cell migration and invasion. The target binding was confirmed through the luciferase reporter assay. Results The expression of MNX1-AS1 was increased in OC tumor tissues and cells. Elevated MNX1-AS1 expression is associated with advanced stage and lower overall survival rate. Knockdown of MNX1-AS1 inhibited cell proliferation, migration and invasion, blocked cell cycle, and promoted cell apoptosis in SKOV-3 and OVCAR-3 cells. MNX1-AS1 was competitively binding with miR-744-5p, and its downstream target gene was SOX12. miR-544-5p expression was decreased, while SOX12 expression was increased in OC tumor tissues and cells. Overexpression of miR-744-5p inhibited cell proliferation, migration, invasion and promoted cell apoptosis in SKOV-3 and OVCAR-3 cells. Conclusion MNX1-AS1 promoted the development of OC through miR-744-5p/SOX12 axis. This study revealed a novel mechanism of MNX1-AS1 in OC, which may provide a new treatment or scanning target for OC. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-021-00910-0.
Collapse
Affiliation(s)
- Yang Shen
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Street, Nanjing, 210009, Jiangsu, China
| | - Mengmeng Lv
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Street, Nanjing, 210009, Jiangsu, China
| | - Yichen Fang
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Street, Nanjing, 210009, Jiangsu, China
| | - Jin Lu
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Street, Nanjing, 210009, Jiangsu, China
| | - Yuzhong Wu
- Department of Gynecologic Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Street, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
5
|
Ma J, Hu X, Dai B, Wang Q, Wang H. Prediction of the mechanism of miRNAs in laryngeal squamous cell carcinoma based on the miRNA-mRNA regulatory network. PeerJ 2021; 9:e12075. [PMID: 34513340 PMCID: PMC8395572 DOI: 10.7717/peerj.12075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/06/2021] [Indexed: 12/19/2022] Open
Abstract
In this study, a bioinformatics analysis is conducted to screen differentially expressed miRNAs and mRNAs in laryngeal squamous cell carcinoma (LSCC). Based on this information, we explored the possible roles of miRNAs in the pathogenesis of LSCC. The RNA-Seq data from 79 laryngeal cancer samples in the Gene Expression Omnibus (GEO) database were sorted. Differentially expressed miRNAs and mRNAs in LSCC are screened using the PERL programming language, and it was analysed by Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The miRNA-mRNA regulatory network of LSCC is constructed using Cytoscape software. Then, quantitative real-time PCR (QRT- PCR), Cell Counting Kit-8 (CCK8) and flow cytometry analysis we are used to further validate key miRNAs. We identified 99 differentially expressed miRNAs and 2,758 differentially expressed mRNAs in LSCC tissues from the GEO database. Four more important miRNAs displaying a high degree of connectivity are selected, these results suggest that they play an important role in the pathogenesis of LSCC. As shown in the present study, we identified specific miRNA-mRNA networks associated with the occurrence and development of LSCC through bioinformatics analysis. We found a miRNA molecule closely related to LSCC based on miRNA-mRNA network: miR-140-3p was down-regulated in LSCC. In addition, the potential antitumor effect of miR-140-3p in LSCC was verified in the experiment, and it was proved that overexpression of miR-140-3p could inhibit the proliferation of LSCC cells and promote cell apoptosis, suggesting that miR-140-3p may be a potential tumor marker in LSCC.
Collapse
Affiliation(s)
- Jinhua Ma
- Department of Otolaryngology, Cangzhou Central Hospital, Cangzhou, China
| | - Xiaodong Hu
- Department of Otolaryngology, Cangzhou Central Hospital, Cangzhou, China
| | - Baoqiang Dai
- Department of Otolaryngology, Cangzhou Central Hospital, Cangzhou, China
| | - Qiang Wang
- Department of Otolaryngology, Cangzhou Central Hospital, Cangzhou, China
| | - Hongqin Wang
- Department of Otolaryngology, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
6
|
Zhang J, Zhao R, Xing D, Cao J, Guo Y, Li L, Sun Y, Tian L, Liu M. Magnesium Isoglycyrrhizinate Induces an Inhibitory Effect on Progression and Epithelial-Mesenchymal Transition of Laryngeal Cancer via the NF-κB/Twist Signaling. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5633-5644. [PMID: 33376307 PMCID: PMC7765753 DOI: 10.2147/dddt.s272323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Background Magnesium isoglycyrrhizinate (MI) was extracted from roots of the plant Glycyrrhiza glabra, which displays multiple pharmacological activities such as anti-inflammation, anti-apoptosis, and anti-tumor. Here, we aimed to investigate the effect of MI on the progression and epithelial–mesenchymal transition (EMT) of laryngeal cancer. Methods Forty laryngeal cancer clinical samples were used. The role of MI in the proliferation of laryngeal cancer cells was assessed by MTT assay, Edu assay and colony formation assay. The function of MI in the migration and invasion of laryngeal cancer cells was tested by transwell assays. The effect of MI on apoptosis of laryngeal cancer cells was determined by cell apoptosis assay. The impact of MI on tumor growth in vivo was analyzed by tumorigenicity analysis using Balb/c nude mice. qPCR and Western blot analysis were performed to measure the expression levels of gene and protein, respectively. Results We identified that EMT-related transcription factor Twist was significantly elevated in the laryngeal cancer tissues. The expression of Twist was also enhanced in the human laryngeal carcinoma HEP-2 cells compared with that in the primary laryngeal epithelial cells. The high expression of Twist was remarkably correlated with poor overall survival of patients with laryngeal cancer. Meanwhile, our data revealed that MI reduced cell proliferation, migration and invasion and enhanced apoptosis of laryngeal cancer cells in vitro. Moreover, MI decreased transcriptional activation and the expression levels of NF-κB and Twist, and alleviated EMT in vitro and in vivo. MI remarkably inhibited tumor growth and EMT of laryngeal cancer cells in vivo. Conclusion MI restrains the progression of laryngeal cancer and induces an inhibitory effect on EMT in laryngeal cancer by modulating the NF-κB/Twist signaling. Our finding provides new insights into the mechanism by which MI inhibits laryngeal carcinoma development, enriching the understanding of the anti-tumor function of MI.
Collapse
Affiliation(s)
- Jiarui Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Rui Zhao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Dongliang Xing
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Jing Cao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Yan Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Liang Li
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Yanan Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Linli Tian
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| | - Ming Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Harbin Medical University, Harbin City, Heilongjiang Province 150086, People's Republic of China
| |
Collapse
|
7
|
Skrzypek K, Majka M. Interplay among SNAIL Transcription Factor, MicroRNAs, Long Non-Coding RNAs, and Circular RNAs in the Regulation of Tumor Growth and Metastasis. Cancers (Basel) 2020; 12:E209. [PMID: 31947678 PMCID: PMC7017348 DOI: 10.3390/cancers12010209] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 02/06/2023] Open
Abstract
SNAIL (SNAI1) is a zinc finger transcription factor that binds to E-box sequences and regulates the expression of genes. It usually acts as a gene repressor, but it may also activate the expression of genes. SNAIL plays a key role in the regulation of epithelial to mesenchymal transition, which is the main mechanism responsible for the progression and metastasis of epithelial tumors. Nevertheless, it also regulates different processes that are responsible for tumor growth, such as the activity of cancer stem cells, the control of cell metabolism, and the regulation of differentiation. Different proteins and microRNAs may regulate the SNAIL level, and SNAIL may be an important regulator of microRNA expression as well. The interplay among SNAIL, microRNAs, long non-coding RNAs, and circular RNAs is a key event in the regulation of tumor growth and metastasis. This review for the first time discusses different types of regulation between SNAIL and non-coding RNAs with a focus on feedback loops and the role of competitive RNA. Understanding these mechanisms may help develop novel therapeutic strategies against cancer based on microRNAs.
Collapse
Affiliation(s)
- Klaudia Skrzypek
- Jagiellonian University Medical College, Faculty of Medicine, Institute of Pediatrics, Department of Transplantation, Wielicka 265, 30-663 Cracow, Poland
| | - Marcin Majka
- Jagiellonian University Medical College, Faculty of Medicine, Institute of Pediatrics, Department of Transplantation, Wielicka 265, 30-663 Cracow, Poland
| |
Collapse
|
8
|
MicroRNA-625 inhibits cell invasion and epithelial-mesenchymal transition by targeting SOX4 in laryngeal squamous cell carcinoma. Biosci Rep 2019; 39:BSR20181882. [PMID: 30563928 PMCID: PMC6340973 DOI: 10.1042/bsr20181882] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Laryngeal squamous cell carcinoma (LSCC) is a highly aggressive malignant cancer, but the molecular mechanisms underlying its development and progression remain largely elusive. The purpose of the present study is to investigate the expression profile and functional role of microRNA-625 (miR-625) in LSCC. MATERIALS AND METHODS LSCC tissues and adjacent normal tissues were collected from 86 LSCC patients. The expression levels of miR-625 and SOX4 mRNA in tissues and cells were detected by RT-qPCR analysis. The expression levels of SOX4 and EMT-related proteins were detected by western blot analysis. In vitro cell proliferation, migration, and invasion were detected by MTT assay, colony formation assay, wound healing assay, and transwell invasion assay, respectively. Dual-luciferase reporter assay was performed to verify the binding relationship between miR-625 and the 3'-UTR of SOX4. RESULTS The results demonstrated that miR-625 is significantly down-regulated in clinical LSCC tissues, and its low expression may be closely associated with unfavorable clinicopathological characteristics of LSCC patients. Overexpression of miR-625 significantly suppressed the proliferation, migration, invasion, and EMT of LSCC cells. Furthermore, SOX4 was validated as a direct target of miR-625 in LSCC cells, and rescue experiments suggested that restoration of SOX4 blocked the tumor suppressive role of miR-625 in LSCC cells. CONCLUSIONS Taken together, these findings highlighted a critical role of miR-625 in the pathogenesis of LSCC, and restoration of miR-625 could be considered as a potential therapeutic strategy against this fatal disease.
Collapse
|
9
|
Zhou B, Zheng P, Li Z, Li H, Wang X, Shi Z, Han Q. CircPCNXL2 sponges miR-153 to promote the proliferation and invasion of renal cancer cells through upregulating ZEB2. Cell Cycle 2018; 17:2644-2654. [PMID: 30488762 DOI: 10.1080/15384101.2018.1553354] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Increasing evidence showed that circular RNAs (circRNAs) play critical roles in tumorigenesis. However, the roles and underlying mechanisms of circRNAs in clear cell renal cell carcinoma (ccRCC) remain unclear. In the present study, we identified a novel circRNA circPCNXL2, which was significantly upregulated in ccRCC by circular RNA microarray. Further analysis revealed that circPCNXL2 was significantly increased and correlated with poor overall survival of ccRCC patients. Function assays revealed that circPCNXL2 knockdown reduced RCC cells proliferation, invasion in vitro, and decreased tumor growth in vivo. In mechanism study, we showed that circPCNXL2 could be bind to miR-153 as a miRNA sponge to regulate ZEB2 expression in RCC progression. In addition, our data reported that the effects of circPCNXL2 inhibition on RCC cells proliferation and invasion could be abolished by miR-153 inhibitors. Altogether, we demonstrated that circPCNXL2 could regulate RCC cells proliferation and invasion by miR-153/ZEB2 axis, suggesting circPCNXL2 might serve as a potential therapeutic target for ccRCC treatment.
Collapse
Affiliation(s)
- Bisheng Zhou
- a Department of Urology Surgery , The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology , Luoyang , China
| | - Pengyi Zheng
- a Department of Urology Surgery , The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology , Luoyang , China
| | - Zhijun Li
- a Department of Urology Surgery , The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology , Luoyang , China
| | - Huibing Li
- a Department of Urology Surgery , The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology , Luoyang , China
| | - Xiaohui Wang
- a Department of Urology Surgery , The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology , Luoyang , China
| | - Zhenguo Shi
- a Department of Urology Surgery , The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology , Luoyang , China
| | - Qingjiang Han
- a Department of Urology Surgery , The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology , Luoyang , China
| |
Collapse
|