1
|
Yu J, Tang R, Li J. Identification of pyroptosis-related lncRNA signature and AC005253.1 as a pyroptosis-related oncogene in prostate cancer. Front Oncol 2022; 12:991165. [PMID: 36248980 PMCID: PMC9556775 DOI: 10.3389/fonc.2022.991165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
Background Pyroptosis and prostate cancer (PCa) are closely related. The role of pyroptosis-related long non-coding RNAs (lncRNAs) (PRLs) in PCa remains elusive. This study aimed to explore the relationship between PRL and PCa prognosis. Methods Gene expression and clinical signatures were obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases. A PRL risk prediction model was established by survival random forest analysis and least absolute shrinkage and selection operator regression. Functional enrichment, immune status, immune checkpoints, genetic mutations, and drug susceptibility analyses related to risk scores were performed by the single-sample gene set enrichment analysis, gene set variation analysis, and copy number variation analysis. PRL expression was verified in PCa cells. Cell Counting Kit-8, 5-ethynyl-2′-deoxyuridine, wound healing, transwell, and Western blotting assay were used to detect the proliferation, migration, invasion, and pyroptosis of PCa cells, respectively. Results Prognostic features based on six PRL (AC129507.1, AC005253.1, AC127502.2, AC068580.3, LIMD1-AS1, and LINC01852) were constructed, and patients in the high-score group had a worse prognosis than those in the low-score group. This feature was determined to be independent by Cox regression analysis, and the area under the curve of the 1-, 3-, and 5-year receiver operating characteristic curves in the testing cohort was 1, 0.93, and 0.92, respectively. Moreover, the external cohort validation confirmed the robustness of the PRL risk prediction model. There was a clear distinction between the immune status of the two groups. The expression of multiple immune checkpoints was also reduced in the high-score group. Gene mutation proportion in the high-score group increased, and the sensitivity to drugs increased significantly. Six PRLs were upregulated in PCa cells. Silencing of AC005253.1 inhibited cell proliferation, migration, and invasion in DU145 and PC-3 cells. Moreover, silencing of AC005253.1 promoted pyroptosis and inflammasome AIM2 expression. Conclusions Overall, we constructed a prognostic model of PCa with six PRLs and identified their expression in PCa cells. The experimental verification showed that AC005253.1 could affect the proliferation, migration, and invasion abilities of PCa cells. Meanwhile, AC005253.1 may play an important role in PCa by affecting pyroptosis through the AIM2 inflammasome. This result requires further research for verification.
Collapse
Affiliation(s)
- JiangFan Yu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Rui Tang
- Department of Rheumatology and Immunology, Second Xiangya Hospital, Central South University, Changsha, China
| | - JinYu Li
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: JinYu Li,
| |
Collapse
|
2
|
Mi L, Zhang N, Wan J, Cheng M, Liao J, Zheng X. Remote ischemic post‑conditioning alleviates ischemia/reperfusion‑induced intestinal injury via the ERK signaling pathway‑mediated RAGE/HMGB axis. Mol Med Rep 2021; 24:773. [PMID: 34490475 PMCID: PMC8441982 DOI: 10.3892/mmr.2021.12413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Intestinal ischemia reperfusion (I/R) injury is a tissue and organ injury that frequently occurs during surgery and significantly contributes to the pathological processes of severe infection, injury, shock, cardiopulmonary insufficiency and other diseases. However, the mechanism of intestinal I/R injury remains to be elucidated. A mouse model of intestinal I/R injury was successfully established and the model mice were treated with remote ischemic post‑conditioning (RIPOC) and/or an ERK inhibitor (CC‑90003), respectively. Histopathological changes of the intestinal mucosa were determined by hematoxylin and eosin staining. In addition, the levels of high‑mobility group box 1 (HMGB1) and receptor for advanced glycation end products (RAGE) expression were confirmed by reverse transcription‑quantitative polymerase chain reaction, western blotting and immunohistochemistry assays. The levels of antioxidants, oxidative stress markers (8‑OHdG) and interleukin 1 family members were evaluated by ELISA assays and the levels of NF‑κB pathway proteins were analyzed by western blotting. The data demonstrated that RIPOC could attenuate the histopathological features of intestinal mucosa in the intestinal I/R‑injury mouse models via the ERK pathway. It was also revealed that HMGB1 and RAGE expression in the mouse models could be markedly reduced by RIPOC (P<0.05) and that these reductions were associated with inhibition of the ERK pathway. Furthermore, it was demonstrated that RIPOC produced significant antioxidant and anti‑inflammatory effects following an intestinal I/R injury and that these effects were mediated via the ERK pathway (P<0.05). In addition, RIPOC was demonstrated to suppress the NF‑κB (p65)/NLR family pyrin domain containing 3 (NLRP3) inflammatory pathways in the intestinal I/R injury mouse models via the ERK pathway. The findings of the present study demonstrated that RIPOC helped to protect mice with an intestinal I/R injury by downregulating the ERK pathway.
Collapse
Affiliation(s)
- Lei Mi
- Department of Gastrointestinal Surgery, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Nan Zhang
- Department of Gastrointestinal Surgery, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Jiyun Wan
- Department of Gastrointestinal Surgery, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Ming Cheng
- Department of Gastrointestinal Surgery, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Jianping Liao
- Department of Gastrointestinal Surgery, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Xiao Zheng
- Department of Gastrointestinal Surgery, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| |
Collapse
|
3
|
Innis SM, Cabot B. GBAF, a small BAF sub-complex with big implications: a systematic review. Epigenetics Chromatin 2020; 13:48. [PMID: 33143733 PMCID: PMC7607862 DOI: 10.1186/s13072-020-00370-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/23/2020] [Indexed: 12/01/2022] Open
Abstract
ATP-dependent chromatin remodeling by histone-modifying enzymes and chromatin remodeling complexes is crucial for maintaining chromatin organization and facilitating gene transcription. In the SWI/SNF family of ATP-dependent chromatin remodelers, distinct complexes such as BAF, PBAF, GBAF, esBAF and npBAF/nBAF are of particular interest regarding their implications in cellular differentiation and development, as well as in various diseases. The recently identified BAF subcomplex GBAF is no exception to this, and information is emerging linking this complex and its components to crucial events in mammalian development. Furthermore, given the essential nature of many of its subunits in maintaining effective chromatin remodeling function, it comes as no surprise that aberrant expression of GBAF complex components is associated with disease development, including neurodevelopmental disorders and numerous malignancies. It becomes clear that building upon our knowledge of GBAF and BAF complex function will be essential for advancements in both mammalian reproductive applications and the development of more effective therapeutic interventions and strategies. Here, we review the roles of the SWI/SNF chromatin remodeling subcomplex GBAF and its subunits in mammalian development and disease.
Collapse
Affiliation(s)
- Sarah M Innis
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Birgit Cabot
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
4
|
Han F, Zhang L, Chen C, Wang Y, Zhang Y, Qian L, Sun W, Zhou D, Yang B, Zhang H, Lai M. GLTSCR1 Negatively Regulates BRD4-Dependent Transcription Elongation and Inhibits CRC Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901114. [PMID: 31832310 PMCID: PMC6891902 DOI: 10.1002/advs.201901114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/30/2019] [Indexed: 05/08/2023]
Abstract
Frameshift mutations frequently occur in colorectal cancer (CRC) with microsatellite instability (MSI), but the nature and biological function of many MSI-associated mutations remain elusive. Here, an MSI frameshift mutation is identified in glioma tumor suppressor candidate region gene 1 (GLTSCR1) that produces two C-terminal-truncated proteins. Additionally, GLTSCR1 is verified as a tumor suppressor that inhibits CRC metastasis. Through binding to bromodomains and the phosphorylation-dependent interaction domain of bromodomain protein 4 (BRD4) via the C-terminus, GLTSCR1 blocks oncogenic transcriptional elongation. However, truncated GLTSCR1 translocates into the cytoplasm and loses BRD4 binding domain, which induces the phosphorylation of RNA Pol II at Ser2 and dephosphorylation at Ser5, then increases oncogenic transcriptional elongation. Importantly, GLTSCR1 deficiency decreases sensitivity to bromodomain and extra terminal domain inhibitors. This study highlights the molecular mechanism of the GLTSCR1-BRD4 interaction, which is a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Fengyan Han
- Department of PathologyKey Laboratory of Disease Proteomics of Zhejiang ProvinceResearch unit of intelligence classification of tumor pathology and precision therapy Chinese Academy of Medical Sciences (2019RU042)School of MedicineZhejiang UniversityHangzhou310058China
| | - Lei Zhang
- Department of PharmacologyChina Pharmaceutical UniversityNanjing210009China
| | - Chaoyi Chen
- Department of PathologyKey Laboratory of Disease Proteomics of Zhejiang ProvinceResearch unit of intelligence classification of tumor pathology and precision therapy Chinese Academy of Medical Sciences (2019RU042)School of MedicineZhejiang UniversityHangzhou310058China
| | - Yan Wang
- Department of PathologyKey Laboratory of Disease Proteomics of Zhejiang ProvinceResearch unit of intelligence classification of tumor pathology and precision therapy Chinese Academy of Medical Sciences (2019RU042)School of MedicineZhejiang UniversityHangzhou310058China
| | - Yi Zhang
- Department of PathologyKey Laboratory of Disease Proteomics of Zhejiang ProvinceResearch unit of intelligence classification of tumor pathology and precision therapy Chinese Academy of Medical Sciences (2019RU042)School of MedicineZhejiang UniversityHangzhou310058China
| | - Lili Qian
- Department of PathologyKey Laboratory of Disease Proteomics of Zhejiang ProvinceResearch unit of intelligence classification of tumor pathology and precision therapy Chinese Academy of Medical Sciences (2019RU042)School of MedicineZhejiang UniversityHangzhou310058China
| | - Wenjie Sun
- Department of PathologyKey Laboratory of Disease Proteomics of Zhejiang ProvinceResearch unit of intelligence classification of tumor pathology and precision therapy Chinese Academy of Medical Sciences (2019RU042)School of MedicineZhejiang UniversityHangzhou310058China
| | - Dan Zhou
- Department of PathologyKey Laboratory of Disease Proteomics of Zhejiang ProvinceResearch unit of intelligence classification of tumor pathology and precision therapy Chinese Academy of Medical Sciences (2019RU042)School of MedicineZhejiang UniversityHangzhou310058China
| | - Beibei Yang
- Department of PathologyKey Laboratory of Disease Proteomics of Zhejiang ProvinceResearch unit of intelligence classification of tumor pathology and precision therapy Chinese Academy of Medical Sciences (2019RU042)School of MedicineZhejiang UniversityHangzhou310058China
| | - Honghe Zhang
- Department of PathologyKey Laboratory of Disease Proteomics of Zhejiang ProvinceResearch unit of intelligence classification of tumor pathology and precision therapy Chinese Academy of Medical Sciences (2019RU042)School of MedicineZhejiang UniversityHangzhou310058China
| | - Maode Lai
- Department of PathologyKey Laboratory of Disease Proteomics of Zhejiang ProvinceResearch unit of intelligence classification of tumor pathology and precision therapy Chinese Academy of Medical Sciences (2019RU042)School of MedicineZhejiang UniversityHangzhou310058China
- Department of PharmacologyChina Pharmaceutical UniversityNanjing210009China
| |
Collapse
|
5
|
Zhang Y, Qian H, Xu A, Yang G. Increased expression of CD81 is associated with poor prognosis of prostate cancer and increases the progression of prostate cancer cells in vitro. Exp Ther Med 2019; 19:755-761. [PMID: 31885712 DOI: 10.3892/etm.2019.8244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/30/2019] [Indexed: 12/27/2022] Open
Abstract
CD81, a member of the tetraspanin family, has been revealed to be upregulated and associated with prognosis in several types of cancer; however, this relationship has not been explored in prostate cancer. The present study aimed to investigate the prognostic significance and functional role of CD81 in prostate cancer. The expression of CD81 in prostate cancer tissues and cell lines was evaluated using qRT-PCR analysis. Kaplan-Meier survival analysis and Cox regression analysis were conducted to explore the prognostic significance of CD81. Cell experiments were used to explore the effects of CD81 on cell proliferation, migration, and invasion in prostate cell lines in vitro. The expression of CD81 was increased in both prostate cancer tissues and cell lines. Upregulation of CD81 was significantly associated with lymph node metastasis and TNM stage. Moreover, patients with high CD81 levels had poorer overall survival than those with lower levels. Additionally, tumor cell proliferation, migration, and invasion were inhibited by knockdown of CD81. The present results indicated that CD81 plays an oncogenic role in prostate cancer. Overexpression of CD81 may serve as a prognostic biomarker and therapeutic target and is involved in the progression of prostate cancer.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Urology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Haining Qian
- Department of Urology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - An Xu
- Department of Urology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Ganggang Yang
- Department of Urology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| |
Collapse
|
6
|
Lin X, Kapoor A, Gu Y, Chow MJ, Xu H, Major P, Tang D. Assessment of biochemical recurrence of prostate cancer (Review). Int J Oncol 2019; 55:1194-1212. [PMID: 31638194 PMCID: PMC6831208 DOI: 10.3892/ijo.2019.4893] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
The assessment of the risk of biochemical recurrence (BCR) is critical in the management of males with prostate cancer (PC). Over the past decades, a comprehensive effort has been focusing on improving risk stratification; a variety of models have been constructed using PC-associated pathological features and molecular alterations occurring at the genome, protein and RNA level. Alterations in RNA expression (lncRNA, miRNA and mRNA) constitute the largest proportion of the biomarkers of BCR. In this article, we systemically review RNA-based BCR biomarkers reported in PubMed according to the PRISMA guidelines. Individual miRNAs, mRNAs, lncRNAs and multi-gene panels, including the commercially available signatures, Oncotype DX and Prolaris, will be discussed; details related to cohort size, hazard ratio and 95% confidence intervals will be provided. Mechanistically, these individual biomarkers affect multiple pathways critical to tumorigenesis and progression, including epithelial-mesenchymal transition (EMT), phosphatase and tensin homolog (PTEN), Wnt, growth factor receptor, cell proliferation, immune checkpoints and others. This variety in the mechanisms involved not only validates their associations with BCR, but also highlights the need for the coverage of multiple pathways in order to effectively stratify the risk of BCR. Updates of novel biomarkers and their mechanistic insights are considered, which suggests new avenues to pursue in the prediction of BCR. Additionally, the management of patients with BCR and the potential utility of the stratification of the risk of BCR in salvage treatment decision making for these patients are briefly covered. Limitations will also be discussed.
Collapse
Affiliation(s)
- Xiaozeng Lin
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Anil Kapoor
- The Research Institute of St. Joe's Hamilton, St. Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
| | - Yan Gu
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Mathilda Jing Chow
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Hui Xu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Pierre Major
- Division of Medical Oncology, Department of Oncology, McMaster University, Hamilton, ON L8V 5C2, Canada
| | - Damu Tang
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
7
|
Wu W, Bai S, Zhu D, Li K, Dong W, He W, Peng S, Lai Y, Wang Q, Guo Z, Liu L, Huang H. Overexpression of malignant brain tumor domain containing protein 1 predicts a poor prognosis of prostate cancer. Oncol Lett 2019; 17:4640-4646. [PMID: 30944653 DOI: 10.3892/ol.2019.10109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 10/29/2018] [Indexed: 11/05/2022] Open
Abstract
Malignant brain tumor domain containing protein 1 (MBTD1) is a member of the polycomb group protein family that is associated with tumorigenesis. The present study investigated the role of MBTD1 within defined clinicopathological parameters and the prognosis of patients with prostate cancer (PCa). A human tissue microarray containing samples from 71 patients with PCa and seven healthy donors was employed for immunohistochemistry (IHC). The clinicopathological characteristics and prognostic value of MBTD1 were investigated using a dataset of 499 patients from The Cancer Genome Atlas (TCGA). IHC illustrated that the levels of MBTD1 protein were enhanced and markedly associated with aggressive clinical stage and advanced tumor invasion, distant metastasis and lymph node metastasis in patients with PCa. In the TCGA data set, the level of MBTD1 was found to positively correlate with the prostate-specific antigen level, Gleason score and distant metastasis. The multivariate analysis of Cox regression revealed that the levels of MBTD1 may act as an independent prognostic factor for low non-biochemical, recurrence-free survival. In conclusion, MBTD1 was overexpressed in PCa tissues and is associated with aggressive clinicopathological characteristics. It may therefore act as a novel prognostic factor and diagnostic marker in PCa.
Collapse
Affiliation(s)
- Wanhua Wu
- Department of Urology, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Shoumin Bai
- Department of Urology, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Dingjun Zhu
- Department of Urology, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Kaiwen Li
- Department of Urology, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Wen Dong
- Department of Urology, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Wang He
- Department of Urology, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Shengmeng Peng
- Department of Urology, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Yiming Lai
- Department of Urology, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Qiong Wang
- Department of Urology, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Zhenghui Guo
- Department of Urology, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Leyuan Liu
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77845, USA
| | - Hai Huang
- Department of Urology, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, The Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| |
Collapse
|