1
|
Canu V, Vaccarella S, Sacconi A, Pulito C, Goeman F, Pallocca M, Rutigliano D, Lev S, Strano S, Blandino G. Targeting of mutant-p53 and MYC as a novel strategy to inhibit oncogenic SPAG5 activity in triple negative breast cancer. Cell Death Dis 2024; 15:603. [PMID: 39164278 PMCID: PMC11336084 DOI: 10.1038/s41419-024-06987-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024]
Abstract
Triple negative breast cancer (TNBC) is an aggressive disease which currently has no effective therapeutic targets and prominent biomarkers. The Sperm Associated antigen 5 (SPAG5) is a mitotic spindle associated protein with oncogenic function in several human cancers. In TNBC, increased SPAG5 expression has been associated with tumor progression, chemoresistance, relapse, and poor clinical outcome. Here we show that high SPAG5 expression in TNBC is regulated by coordinated activity of YAP, mutant p53 and MYC. Depletion of YAP or mutant p53 proteins reduced SPAG5 expression and the recruitment of MYC onto SPAG5 promoter. Targeting of MYC also reduced SPAG5 expression and concomitantly tumorigenicity of TNBC cells. These effects of MYC targeting were synergized with cytotoxic chemotherapy and markedly reduced TNBC oncogenicity in SPAG5-expression dependent manner. These results suggest that mutant p53-MYC-SPAG5 expression can be considered as bona fide predictors of patient's outcome, and reliable biomarkers for effective anticancer therapies.
Collapse
Affiliation(s)
- Valeria Canu
- Translational Oncology Research Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sebastiano Vaccarella
- Translational Oncology Research Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- Biostatistics, Bioinformatics and Clinical Trial Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudio Pulito
- Translational Oncology Research Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Frauke Goeman
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Matteo Pallocca
- Biostatistics, Bioinformatics and Clinical Trial Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
- Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Daniela Rutigliano
- Translational Oncology Research Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sima Lev
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sabrina Strano
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | - Giovanni Blandino
- Translational Oncology Research Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
2
|
An J, Yang L, Pan Y, He Y, Xie H, Tao Y, Li W, Yan Y, Chen S, Liu Y, Ma X, An L, Ji D, Su Z, Sheng J. SPAG5 Activates PI3K/AKT Pathway and Promotes the Tumor Progression and Chemo-Resistance in Gastric Cancer. DNA Cell Biol 2022; 41:893-902. [PMID: 36264549 DOI: 10.1089/dna.2021.0531] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The sperm-associated antigen 5 (SPAG5) is an important protein in mitosis and cell cycle checkpoint regulation, with more attention as a novel oncogene in various cancers. High level of SPAG5 expression has been detected in our clinical gastric cancer (GC) samples and The Cancer Genome Atlas GC data. However, the bio-function and potential mechanism of SPAG5 in GC remain unclear. In this study, we investigated the role of SPAG5 in GC development and the correlation between SPAG5 and 5-fluorouracil (5-FU) treatment. SPAG5 expression was increased in GC samples compared with that in normal tissues (80.8% vs. 22.0%), which was apparently associated with a worse outcome. Biological experiments showed that knockdown of SPAG5 induced apoptosis and suppressed proliferation in cells and animal models. Downregulation of SPAG5 enhanced the sensitivity of 5-FU in GC cells. Gene microarray chip identified 856 upregulated and 787 downregulated genes in SPAG5 silencing cells. Furthermore, 12 significant genes, including CDKN1A, CDKN1B, EIF4E, MAPK1, and HSP90B1, belonged to the PI3K/AKT signaling pathway using ingenuity pathway analysis. Meanwhile, real-time PCR and Western blotting results showed that knockdown of SPAG5 inhibited PI3K/AKT signaling pathway. Collectively, SPAG5 promotes the growth of GC cells by regulating PI3K/AKT signaling pathway, which could be the promising target gene in GC therapy.
Collapse
Affiliation(s)
- Juan An
- Department of Basic Medical Sciences, Qinghai University, Xi'ning, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, China
| | - Lang Yang
- Department of Gastroenterology, the 7th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuanming Pan
- Department of Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yuqi He
- Department of Gastroenterology, the 7th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hui Xie
- Department of Gastroenterology, the 7th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yurong Tao
- Department of Gastroenterology, the 7th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wei Li
- Department of Cancer Research Center, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yupeng Yan
- Department of Basic Medical Sciences, Qinghai University, Xi'ning, China
| | - Siai Chen
- Department of Basic Medical Sciences, Qinghai University, Xi'ning, China
| | - Ya Liu
- Department of Basic Medical Sciences, Qinghai University, Xi'ning, China
| | - Xiaoming Ma
- Department of Gastrointestinal Tumor Surgery, the Affiliated Hospital of Qinghai University, Xi'ning, China
| | - Ling An
- Department of Internal Medicine, Qinghai People's Hospital, Xi'ning, China
| | - Dongde Ji
- Department of Internal Medicine, Qinghai People's Hospital, Xi'ning, China
| | - Zhanhai Su
- Department of Basic Medical Sciences, Qinghai University, Xi'ning, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, China
| | - Jianqiu Sheng
- Department of Gastroenterology, the 7th Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
3
|
Canu V, Donzelli S, Sacconi A, Lo Sardo F, Pulito C, Bossel N, Di Benedetto A, Muti P, Botti C, Domany E, Bicciato S, Strano S, Yarden Y, Blandino G. Aberrant transcriptional and post-transcriptional regulation of SPAG5, a YAP-TAZ-TEAD downstream effector, fuels breast cancer cell proliferation. Cell Death Differ 2021; 28:1493-1511. [PMID: 33230261 PMCID: PMC8166963 DOI: 10.1038/s41418-020-00677-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 01/28/2023] Open
Abstract
Sperm-associated antigen 5 (SPAG5) is an important driver of the cell mitotic spindle required for chromosome segregation and progression into anaphase. SPAG5 has been identified as an important proliferation marker and chemotherapy-sensitivity predictor, especially in estrogen receptor-negative breast cancer subtypes. Here, we report that SPAG5 is a direct target of miR-10b-3p, and its aberrantly high expression associates with poor disease-free survival in two large cohorts of breast cancer patients. SPAG5 depletion strongly impaired cancer cell cycle progression, proliferation, and migration. Interestingly, high expression of SPAG5 pairs with a YAP/TAZ-activated signature in breast cancer patients. Reassuringly, the depletion of YAP, TAZ, and TEAD strongly reduced SPAG5 expression and diminished its oncogenic effects. YAP, TAZ coactivators, and TEAD transcription factors are key components of the Hippo signaling pathway involved in tumor initiation, progression, and metastasis. Furthermore, we report that SPAG5 is a direct transcriptional target of TEAD/YAP/TAZ, and pharmacological targeting of YAP and TAZ severely reduces SPAG5 expression. Collectively, our data uncover an oncogenic feedback loop, comprising miR-10b-3p, SPAG5, and YAP/TAZ/TEAD, which fuels the aberrant proliferation of breast cancer.
Collapse
Affiliation(s)
- Valeria Canu
- grid.417520.50000 0004 1760 5276Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sara Donzelli
- grid.417520.50000 0004 1760 5276Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Andrea Sacconi
- grid.417520.50000 0004 1760 5276Clinical Trial Center, Biostatistics and Bioinformatics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Federica Lo Sardo
- grid.417520.50000 0004 1760 5276Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudio Pulito
- grid.417520.50000 0004 1760 5276Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Noa Bossel
- grid.13992.300000 0004 0604 7563Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 7610001 Israel
| | - Anna Di Benedetto
- grid.417520.50000 0004 1760 5276Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Muti
- grid.4708.b0000 0004 1757 2822Department of Biomedical Science and Oral Health, University of Milan, Milan, 20122 Italy
| | - Claudio Botti
- grid.417520.50000 0004 1760 5276Breast Surgery Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Eytan Domany
- grid.13992.300000 0004 0604 7563Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, 7610001 Israel
| | - Silvio Bicciato
- grid.7548.e0000000121697570Center for Genome Research, Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sabrina Strano
- grid.417520.50000 0004 1760 5276SAFU Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Yosef Yarden
- grid.13992.300000 0004 0604 7563Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 7610001 Israel
| | - Giovanni Blandino
- grid.417520.50000 0004 1760 5276Oncogenomic and Epigenetic Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
4
|
High expression of sperm-associated antigen 5 correlates with poor survival in ovarian cancer. Biosci Rep 2021; 40:221952. [PMID: 31985007 PMCID: PMC7007403 DOI: 10.1042/bsr20193087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/07/2020] [Accepted: 01/24/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Sperm-associated antigen 5 (SPAG5), a spindle-binding protein, regulates the process of mitosis. The present study focused on the relationship between SPAG5 expression and the clinicopathological characteristics and prognosis of ovarian cancer. METHODS First, we used the Gene Expression Omnibus (GEO) database to analyze SPAG5 expression in ovarian cancer and its clinical relevance. Subsequently, qPCR test was used to detect SPAG5 mRNA expression in 20 cases of ovarian cancer. The expression of SPAG5 protein in a tissue microarray containing 102 cases of ovarian cancer was detected by immunohistochemistry. Cox regression and Kaplan-Meier survival analyses were performed to identify the prognostic factors for the 102 ovarian cancer patients. RESULTS In the GEO datasets, SPAG5 mRNA expression was significantly higher in ovarian cancer tissues than that in normal ovarian tissues (P < 0.001). qPCR and immunohistochemistry showed that SPAG5 expression in ovarian cancer tissues was significantly higher than that in paracancerous tissues (P = 0.002, P < 0.001). The high expression of SPAG5 in ovarian cancer was correlated with histological type (P = 0.009), lymph node metastasis (P = 0.001), distant metastasis (P = 0.001), TNM stage (P = 0.001), and prognosis (P = 0.001). The Kaplan-Meier curve indicated that rates of disease-free survival (DFS) and overall survival (OS) were even lower in patients with high SPAG5 expression. Multivariate analysis showed that SPAG5 expression (P = 0.001) and TNM staging (P = 0.002) were independent prognostic factors for the DFS of ovarian cancer. CONCLUSIONS These results suggest that high SPAG5 expression was correlated with multiple clinicopathological features of ovarian cancer and can be used as an evaluation indicator for a poor ovarian cancer prognosis.
Collapse
|
5
|
Xu T, Zhang R, Dong M, Zhang Z, Li H, Zhan C, Li X. Osteoglycin (OGN) Inhibits Cell Proliferation and Invasiveness in Breast Cancer via PI3K/Akt/mTOR Signaling Pathway. Onco Targets Ther 2019; 12:10639-10650. [PMID: 31824171 PMCID: PMC6900314 DOI: 10.2147/ott.s222967] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/18/2019] [Indexed: 12/24/2022] Open
Abstract
Introduction Previous studies have indicated that the small leucine-rich proteoglycan (SLR) osteoglycin (OGN) is downregulated in various cancers, including squamous cervical carcinoma, gastric cancer, and colorectal adenoma, indicating that OGN is a putative tumor suppressor. However, its exact role in the pathology of human cancers, especially breast cancer (BC), is not clear. Methods The expression of OGN in BC tissues was examined using qRT-PCR. Online databases were employed to analyze the correlation between OGN expression and clinicopathological characteristics. CCK-8 assay, colony formation assay, transwell migration and invasion assays were applied to detect cell proliferation, colony formation, migration and invasion of BC cells, respectively. Xenograft tumor models were constructed to explore the role of OGN on tumor growth in vivo. Results OGN expression was reduced in 24 paired BC samples compared with normal tissue. Decreased expression of OGN was correlated with greater pathological grade, a more aggressive tumor subtype, and poor overall survival. In vitro experiments showed that OGN overexpressed by plasmid transfection significantly inhibited cell proliferation, colony formation, migration, and invasion of BC cell lines. In xenograft tumor models, overexpression of OGN repressed the growth of MCF-7 cells in vivo and alleviated the compression of the tumor on surrounding structures. We also observed that OGN expression reversed EMT via repressing the PI3K/Akt/mTOR pathway. Conclusion This study revealed that OGN could function as a tumor suppressor during breast carcinogenesis, and we contribute new evidence to the body of research on the SLRP family.
Collapse
Affiliation(s)
- Tao Xu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Rui Zhang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Menglu Dong
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Zeyu Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Hanning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Chenao Zhan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| |
Collapse
|