1
|
Elhamipour M, Soleimanjahi H, Abdoli A, Sharifi N, Karimi H, Soleyman Jahi S, Kvistad R. Combination Therapy with Secretome of Reovirus-Infected Mesenchymal Stem Cells and Metformin Improves Anticancer Effects of Irinotecan on Colorectal Cancer Cells in vitro. Intervirology 2024; 68:1-16. [PMID: 39561737 DOI: 10.1159/000542356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/29/2024] [Indexed: 11/21/2024] Open
Abstract
INTRODUCTION Irinotecan, a topoismorase 1 inhibitor, has been used for the treatment of colorectal cancer. It was shown that monotherapy alone is largely ineffective. The combination therapy was used for antitumor activity. The synergistic anticancer effects of oncolytic reovirus-infected secretome in combination with irinotecan and metformin are evaluated in vitro. The aim of research was to assess anticancer impacts of ReoT3D, irinotecan, metformin in combination, against murine colorectal cancer cells (CT26). METHODS The L929 and the CT26 colorectal cancerous cell lines were treated in vitro with irinotecan, metformin, the Dearing strain of reovirus serotype 3 (ReoT3D) (V), and the secretome of intact (S) or reovirus-infected murine adipose-derived mesenchymal stem cells (SV). The cell viability was measured by MTT, and the apoptosis rate was analyzed by annexin V-FITC staining and flow cytometry 48 and 72 h after treatment. RESULTS We found that cells exposed to a combination of SV+Met+I had significantly lower cell viability and higher apoptosis rates as compared to cells exposed to Met+I, 48 and 72 h. These results suggest that metformin in combination with irinotecan and reovirus produces a synergistic effect on cell death, and adding reovirus-infected secretome (SV) to a Met+I regimen induces a higher apoptosis rate compared to Met+I alone. Based on the results, the combination of SV+Met+I has induced more apoptosis than S, SV, SV+I, and SV+Met. Also, all of the combined treatments induced apoptosis significantly versus secretome alone. DISCUSSION In this in vitro study, we found that the combination of T3D reovirus (oncolytic virus) and metformin with the anticancer drug irinotecan resulted in higher rates of growth inhibition and apoptosis induction in the colorectal cancer cell line. This synergistic effect was even more pronounced when using the combination of secretome derived from reovirus-infected AD-MSCs, metformin, and irinotecan. CONCLUSION We highlight that the combination of ReoT3D-derived secretome with irinotecan and metformin showed a synergistic anticancer effect on the CT26 cell line, and this strategy may be considered as a new approach against colorectal cancer in the in vitro and in vivo in future studies.
Collapse
Affiliation(s)
- Maliheh Elhamipour
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran,
| | - Hoorieh Soleimanjahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Negar Sharifi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hesam Karimi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Saeed Soleyman Jahi
- Division of Gastroenterology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ruth Kvistad
- Department of Biology, University of Missouri - St. Louis, St. Louis, Missouri, USA
- Department of Chemistry and Biochemistry, University of Missouri - St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Vaghari-Tabari M, Jafari-Gharabaghlou D, Mohammadi M, Hashemzadeh MS. Zinc Oxide Nanoparticles and Cancer Chemotherapy: Helpful Tools for Enhancing Chemo-sensitivity and Reducing Side Effects? Biol Trace Elem Res 2024; 202:1878-1900. [PMID: 37639166 DOI: 10.1007/s12011-023-03803-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/05/2023] [Indexed: 08/29/2023]
Abstract
Cancer chemotherapy is still a serious challenge. Chemo-resistance and destructive side effects of chemotherapy drugs are the most critical limitations of chemotherapy. Chemo-resistance is the leading cause of chemotherapy failure. Chemo-resistance, which refers to the resistance of cancer cells to the anticancer effects of chemotherapy drugs, is caused by various reasons. Among the most important of these reasons is the increase in the efflux of chemotherapy drugs due to the rise in the expression and activity of ABC transporters, the weakening of apoptosis, and the strengthening of stemness. In the last decade, a significant number of studies focused on the application of nanotechnology in cancer treatment. Considering the anti-cancer properties of zinc, zinc oxide nanoparticles have received much attention in recent years. Some studies have indicated that zinc oxide nanoparticles can target the critical mechanisms of cancer chemo-resistance and enhance the effectiveness of chemotherapy drugs. These studies have shown that zinc oxide nanoparticles can reduce the activity of ABC transporters, increase DNA damage and apoptosis, and attenuate stemness in cancer cells, leading to enhanced chemo-sensitivity. Some other studies have also shown that zinc oxide nanoparticles in low doses can be helpful in minimizing the harmful side effects of chemotherapy drugs. In this article, after a brief overview of the mechanisms of chemo-resistance and anticancer effects of zinc, we will review all these studies in detail.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mozafar Mohammadi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
3
|
Chen J, Tang LWT, Jordan S, Harrison M, Gualtieri GM, DaSilva E, Morris D, Bora G, Che Y, Di L. Characterization of CYP3A5 Selective Inhibitors for Reaction Phenotyping of Drug Candidates. AAPS J 2024; 26:26. [PMID: 38366061 DOI: 10.1208/s12248-024-00894-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/26/2024] [Indexed: 02/18/2024] Open
Abstract
CYP3A is one of the most important classes of enzymes and is involved in the metabolism of over 70% drugs. While several selective CYP3A4 inhibitors have been identified, the search for a selective CYP3A5 inhibitor has turned out to be rather challenging. Recently, several selective CYP3A5 inhibitors have been identified through high-throughput screening of ~ 11,000 compounds and hit expansion using human recombinant enzymes. We set forth to characterize the three most selective CYP3A5 inhibitors in a more physiologically relevant system of human liver microsomes to understand if these inhibitors can be used for reaction phenotyping studies in drug discovery settings. Gomisin A and T-5 were used as selective substrate reactions for CYP3A4 and CYP3A5 to determine IC50 values of the two enzymes. The results showed that clobetasol propionate and loteprednol etabonate were potent and selective CYP3A5 reversible inhibitors with selectivity of 24-fold against CYP3A4 and 39-fold or more against the other major CYPs. The selectivity of difluprednate in HLM is much weaker than that in the recombinant enzymes due to hydrolysis of the acetate group in HLM. Based on the selectivity data, loteprednol etabonate can be utilized as an orthogonal approach, when experimental fraction metabolized of CYP3A5 is greater than 0.5, to understand CYP3A5 contribution to drug metabolism and its clinical significance. Future endeavors to identify even more selective CYP3A5 inhibitors are warranted to enable accurate determination of CYP3A5 contribution to metabolism versus CYP3A4.
Collapse
Affiliation(s)
- Jie Chen
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Cambridge, MA, USA
| | - Lloyd Wei Tat Tang
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Samantha Jordan
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Makayla Harrison
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Gabrielle M Gualtieri
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Ethan DaSilva
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Danial Morris
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Gary Bora
- Discovery Sciences, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Ye Che
- Discovery Sciences, Pfizer Worldwide Research and Development, Groton, CT, USA
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT, USA.
| |
Collapse
|
4
|
Zhou X, An J, Kurilov R, Brors B, Hu K, Peccerella T, Roessler S, Pfütze K, Schulz A, Wolf S, Hohmann N, Theile D, Sauter M, Burhenne J, Ei S, Heger U, Strobel O, Barry ST, Springfeld C, Tjaden C, Bergmann F, Büchler M, Hackert T, Fortunato F, Neoptolemos JP, Bailey P. Persister cell phenotypes contribute to poor patient outcomes after neoadjuvant chemotherapy in PDAC. NATURE CANCER 2023; 4:1362-1381. [PMID: 37679568 PMCID: PMC10518256 DOI: 10.1038/s43018-023-00628-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/02/2023] [Indexed: 09/09/2023]
Abstract
Neoadjuvant chemotherapy can improve the survival of individuals with borderline and unresectable pancreatic ductal adenocarcinoma; however, heterogeneous responses to chemotherapy remain a significant clinical challenge. Here, we performed RNA sequencing (n = 97) and multiplexed immunofluorescence (n = 122) on chemo-naive and postchemotherapy (post-CTX) resected patient samples (chemoradiotherapy excluded) to define the impact of neoadjuvant chemotherapy. Transcriptome analysis combined with high-resolution mapping of whole-tissue sections identified GATA6 (classical), KRT17 (basal-like) and cytochrome P450 3A (CYP3A) coexpressing cells that were preferentially enriched in post-CTX resected samples. The persistence of GATA6hi and KRT17hi cells post-CTX was significantly associated with poor survival after mFOLFIRINOX (mFFX), but not gemcitabine (GEM), treatment. Analysis of organoid models derived from chemo-naive and post-CTX samples demonstrated that CYP3A expression is a predictor of chemotherapy response and that CYP3A-expressing drug detoxification pathways can metabolize the prodrug irinotecan, a constituent of mFFX. These findings identify CYP3A-expressing drug-tolerant cell phenotypes in residual disease that may ultimately inform adjuvant treatment selection.
Collapse
Affiliation(s)
- Xu Zhou
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany
| | - Jingyu An
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany
| | - Roma Kurilov
- Division of Applied Bioinformatics, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, The German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center Heidelberg, Heidelberg, Germany
- National Center for Tumour Disease (NCT), Heidelberg, Germany
| | - Kai Hu
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany
| | - Teresa Peccerella
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany
| | - Stephanie Roessler
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Katrin Pfütze
- Department of Translational Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angela Schulz
- NGS Core Facility, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Wolf
- NGS Core Facility, The German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nicolas Hohmann
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Dirk Theile
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Max Sauter
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Shigenori Ei
- Department of Gastroenterological Surgery, Tokai University School of Medicine, Kanagawa, Japan
| | - Ulrike Heger
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Oliver Strobel
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria
| | - Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Christoph Springfeld
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Christine Tjaden
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany
| | - Frank Bergmann
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Büchler
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany
- Botton-Champalimaud Pancreatic Cancer Center, Lisbon, Portugal
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.
- Department of General, Visceral and Thoracic Surgery, Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Franco Fortunato
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany.
| | - John P Neoptolemos
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany.
- Botton-Champalimaud Pancreatic Cancer Center, Lisbon, Portugal.
| | - Peter Bailey
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany.
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany.
- Botton-Champalimaud Pancreatic Cancer Center, Lisbon, Portugal.
- School of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
5
|
Lin X, Yang X, Yang Y, Zhang H, Huang X. Research progress of traditional Chinese medicine as sensitizer in reversing chemoresistance of colorectal cancer. Front Oncol 2023; 13:1132141. [PMID: 36994201 PMCID: PMC10040588 DOI: 10.3389/fonc.2023.1132141] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/27/2023] [Indexed: 03/14/2023] Open
Abstract
In recent years, the incidences and mortalities from colorectal cancer (CRC) have been increasing; therefore, there is an urgent need to discover newer drugs that enhance drug sensitivity and reverse drug tolerance in CRC treatment. With this view, the current study focuses on understanding the mechanism of CRC chemoresistance to the drug as well as exploring the potential of different traditional Chinese medicine (TCM) in restoring the sensitivity of CRC to chemotherapeutic drugs. Moreover, the mechanism involved in restoring sensitivity, such as by acting on the target of traditional chemical drugs, assisting drug activation, increasing intracellular accumulation of anticancer drugs, improving tumor microenvironment, relieving immunosuppression, and erasing reversible modification like methylation, have been thoroughly discussed. Furthermore, the effect of TCM along with anticancer drugs in reducing toxicity, increasing efficiency, mediating new ways of cell death, and effectively blocking the drug resistance mechanism has been studied. We aimed to explore the potential of TCM as a sensitizer of anti-CRC drugs for the development of a new natural, less-toxic, and highly effective sensitizer to CRC chemoresistance.
Collapse
Affiliation(s)
- Xiang Lin
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyu Yang
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yushang Yang
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hangbin Zhang
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuan Huang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Xuan Huang,
| |
Collapse
|
6
|
Hervieu C, Christou N, Battu S, Mathonnet M. The Role of Cancer Stem Cells in Colorectal Cancer: From the Basics to Novel Clinical Trials. Cancers (Basel) 2021; 13:1092. [PMID: 33806312 PMCID: PMC7961892 DOI: 10.3390/cancers13051092] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 02/06/2023] Open
Abstract
The treatment options available for colorectal cancer (CRC) have increased over the years and have significantly improved the overall survival of CRC patients. However, the response rate for CRC patients with metastatic disease remains low and decreases with subsequent lines of therapy. The clinical management of patients with metastatic CRC (mCRC) presents a unique challenge in balancing the benefits and harms while considering disease progression, treatment-related toxicities, drug resistance and the patient's overall quality of life. Despite the initial success of therapy, the development of drug resistance can lead to therapy failure and relapse in cancer patients, which can be attributed to the cancer stem cells (CSCs). Thus, colorectal CSCs (CCSCs) contribute to therapy resistance but also to tumor initiation and metastasis development, making them attractive potential targets for the treatment of CRC. This review presents the available CCSC isolation methods, the clinical relevance of these CCSCs, the mechanisms of drug resistance associated with CCSCs and the ongoing clinical trials targeting these CCSCs. Novel therapeutic strategies are needed to effectively eradicate both tumor growth and metastasis, while taking into account the tumor microenvironment (TME) which plays a key role in tumor cell plasticity.
Collapse
Affiliation(s)
- Céline Hervieu
- EA 3842 CAPTuR “Control of Cell Activation in Tumor Progression and Therapeutic Resistance”, Faculty of Medicine, Genomics, Environment, Immunity, Health and Therapeutics (GEIST) Institute, University of Limoges, 87025 Limoges CEDEX, France; (C.H.); (N.C.); (S.B.)
| | - Niki Christou
- EA 3842 CAPTuR “Control of Cell Activation in Tumor Progression and Therapeutic Resistance”, Faculty of Medicine, Genomics, Environment, Immunity, Health and Therapeutics (GEIST) Institute, University of Limoges, 87025 Limoges CEDEX, France; (C.H.); (N.C.); (S.B.)
- Department of General, Endocrine and Digestive Surgery, University Hospital of Limoges, 87025 Limoges CEDEX, France
| | - Serge Battu
- EA 3842 CAPTuR “Control of Cell Activation in Tumor Progression and Therapeutic Resistance”, Faculty of Medicine, Genomics, Environment, Immunity, Health and Therapeutics (GEIST) Institute, University of Limoges, 87025 Limoges CEDEX, France; (C.H.); (N.C.); (S.B.)
| | - Muriel Mathonnet
- EA 3842 CAPTuR “Control of Cell Activation in Tumor Progression and Therapeutic Resistance”, Faculty of Medicine, Genomics, Environment, Immunity, Health and Therapeutics (GEIST) Institute, University of Limoges, 87025 Limoges CEDEX, France; (C.H.); (N.C.); (S.B.)
- Department of General, Endocrine and Digestive Surgery, University Hospital of Limoges, 87025 Limoges CEDEX, France
| |
Collapse
|
7
|
Cellular Mechanisms Accounting for the Refractoriness of Colorectal Carcinoma to Pharmacological Treatment. Cancers (Basel) 2020; 12:cancers12092605. [PMID: 32933095 PMCID: PMC7563523 DOI: 10.3390/cancers12092605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) causes a high number (more than 800,000) of deaths worldwide each year. Better methods for early diagnosis and the development of strategies to enhance the efficacy of the therapeutic approaches used to complement or substitute surgical removal of the tumor are urgently needed. Currently available pharmacological armamentarium provides very moderate benefits to patients due to the high resistance of tumor cells to respond to anticancer drugs. The present review summarizes and classifies into seven groups the cellular and molecular mechanisms of chemoresistance (MOC) accounting for the failure of CRC response to the pharmacological treatment. Abstract The unsatisfactory response of colorectal cancer (CRC) to pharmacological treatment contributes to the substantial global health burden caused by this disease. Over the last few decades, CRC has become the cause of more than 800,000 deaths per year. The reason is a combination of two factors: (i) the late cancer detection, which is being partially solved by the implementation of mass screening of adults over age 50, permitting earlier diagnosis and treatment; (ii) the inadequate response of advanced unresectable tumors (i.e., stages III and IV) to pharmacological therapy. The latter is due to the existence of complex mechanisms of chemoresistance (MOCs) that interact and synergize with each other, rendering CRC cells strongly refractory to the available pharmacological regimens based on conventional chemotherapy, such as pyrimidine analogs (5-fluorouracil, capecitabine, trifluridine, and tipiracil), oxaliplatin, and irinotecan, as well as drugs targeted toward tyrosine kinase receptors (regorafenib, aflibercept, bevacizumab, cetuximab, panitumumab, and ramucirumab), and, more recently, immune checkpoint inhibitors (nivolumab, ipilimumab, and pembrolizumab). In the present review, we have inventoried the genes involved in the lack of CRC response to pharmacological treatment, classifying them into seven groups (from MOC-1 to MOC-7) according to functional criteria to identify cancer cell weaknesses. This classification will be useful to pave the way for developing sensitizing tools consisting of (i) new agents to be co-administered with the active drug; (ii) pharmacological approaches, such as drug encapsulation (e.g., into labeled liposomes or exosomes); (iii) gene therapy interventions aimed at restoring the impaired function of some proteins (e.g., uptake transporters and tumor suppressors) or abolishing that of others (such as export pumps and oncogenes).
Collapse
|