1
|
Wang Y, Su H, Wang X, Tu C, Xiao T, Ren B, Wang S. FOXN3 Regulates Autophagic Activity to Suppress Drug Resistance in Melanoma Cells. Clin Cosmet Investig Dermatol 2024; 17:2505-2518. [PMID: 39530064 PMCID: PMC11552389 DOI: 10.2147/ccid.s462854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/22/2024] [Indexed: 11/16/2024]
Abstract
Background The forkhead box (FOX) family member FOXN3 has been reported to inhibit transcriptional activity associated with regulating tumor development. However, the role of FOXN3 in the pathogenesis of melanoma is not well understood. Objective To investigate the biological functions of FOXN3 in drug resistance of melanoma. Materials and Methods The expression of FOXN3 in melanoma was investigated using Gene Expression profiling interactive analysis (GEPIA) and Linkedomics databases. Melanoma cell proliferation, invasion, and migration were assessed using the colony formation assay, the scratch wound healing test, the Transwell invasion assay, and the nude mice xenograft to determine the effects of FOXN3 over-expression and depletion. The functional role of the transcriptional regulator in melanoma cells was tested through chromatin immunoprecipitation, immunofluorescence. Results FOXN3 was downregulated in melanoma. Over-expression of FOXN3 inhibited the proliferation and motility of melanoma cells, whereas FOXN3 knockdown significantly enhanced the proliferation and motility of melanoma cells. Overexpression of FOXN3 reduced autophagic activity in melanoma cells. Enhanced autophagic activity in drug-resistant melanoma cell lines is related to drug-sensitive cells, and significant differences in FOXN3 localization were observed when comparing melanoma cells that were sensitive and resistant to Vemurafenib. Additionally, FOXN3 has been identified as binding to the promoter region of the cancer antigen Fibrous Sheath Interacting Protein 1 (FSIP1), thereby regulating the expression of this gene. Conclusion FOXN3 functions as an important regulator of the development and progression of Vemurafenib-resistant melanoma cells, partly owing to its binding to the FISP1. As such, FOXN3 may represent a relevant target for therapeutic interventions in patients suffering from drug-resistant melanoma.
Collapse
Affiliation(s)
- Yaqi Wang
- Department of Dermatology, Xi’an Jiaotong University The Second Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Hui Su
- Department of Dermatology, Xi’an Jiaotong University The Second Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Xiaopeng Wang
- Department of Dermatology, Xi’an Jiaotong University The Second Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Chen Tu
- Department of Dermatology, Xi’an Jiaotong University The Second Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Tong Xiao
- Department of Dermatology, Xi’an Jiaotong University The Second Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Bincheng Ren
- Department of Rheumatology and Immunology, Xi’an Jiaotong University The Second Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Shuang Wang
- Department of Dermatology, Xi’an Jiaotong University The Second Affiliated Hospital, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
2
|
Salilew-Wondim D, Tholen E, Held-Hoelker E, Shellander K, Blaschka C, Drillich M, Iwersen M, Suess D, Gebremedhn S, Tesfaye D, Parys C, Helmbrecht A, Guyader J, Miskel D, Trakooljul N, Wimmers K, Hoelker M. Endometrial DNA methylation signatures during the time of breeding in relation to the pregnancy outcome in postpartum dairy cows fed a control diet or supplemented with rumen-protected methionine. Front Genet 2024; 14:1267053. [PMID: 38327702 PMCID: PMC10847534 DOI: 10.3389/fgene.2023.1267053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024] Open
Abstract
Post calving metabolic stress reduces the fertility of high producing dairy cows possibly by altering the expression of genes in the maternal environment via epigenetic modifications. Therefore, this study was conducted to identify endometrial DNA methylation marks that can be associated with pregnancy outcomes in postpartum cows at the time of breeding. For this, twelve days post-calving, cows were either offered a control diet or supplemented daily with rumen-protected methionine. Cows showing heat 50-64 days postpartum were artificially inseminated. Endometrial cytobrush samples were collected 4-8 h after artificial insemination and classified based on the pregnancy out comes as those derived from cows that resulted in pregnancy or resulted in no pregnancy. The DNAs isolated from endometrial samples were then subject to reduced representative bisulfite sequencing for DNA methylation analysis. Results showed that in the control diet group, 1,958 differentially methylated CpG sites (DMCGs) were identified between cows that resulted in pregnancy and those that resulted in no pregnancy of which 890 DMCGs were located on chr 27: 6217254-6225600 bp. A total of 537 DMCGs were overlapped with 313 annotated genes that were involved in various pathways including signal transduction, signalling by GPCR, aldosterone synthesis and secretion. Likewise, in methionine supplemented group, 3,430 CpG sites were differentially methylated between the two cow groups of which 18.7% were located on Chr27: 6217254-6225600 bp. A total of 1,781 DMCGS were overlapped with 890 genes which involved in developmental and signalling related pathways including WNT-signalling, focal adhesion and ECM receptor interaction. Interestingly, 149 genes involved in signal transduction, axon guidance and non-integrin membrane-ECM interactions were differentially methylated between the two cow groups irrespective of their feeding regime, while 453 genes involved in axon guidance, notch signalling and collagen formation were differentially methylated between cows that received rumen protected methionine and control diet irrespective of their fertility status. Overall, this study indicated that postpartum cows that could potentially become pregnant could be distinguishable based on their endometrial DNA methylation patterns at the time of breeding.
Collapse
Affiliation(s)
- Dessie Salilew-Wondim
- Department of Animal Science, Biotechnology and Reproduction of Farm Animals, University of Göttingen, Göttingen, Germany
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Bonn, Germany
| | - Ernst Tholen
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Bonn, Germany
| | - Eva Held-Hoelker
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Bonn, Germany
| | - Karl Shellander
- Department of Animal Science, Biotechnology and Reproduction of Farm Animals, University of Göttingen, Göttingen, Germany
| | - Carina Blaschka
- Department of Animal Science, Biotechnology and Reproduction of Farm Animals, University of Göttingen, Göttingen, Germany
| | - Marc Drillich
- Clinical Unit for Herd Health Management, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michael Iwersen
- Clinical Unit for Herd Health Management, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - David Suess
- Clinical Unit for Herd Health Management, University Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Samuel Gebremedhn
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO, United States
| | - Dawit Tesfaye
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, CO, United States
| | | | | | | | - Dennis Miskel
- Institute of Animal Sciences, Animal Breeding, University of Bonn, Bonn, Germany
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Michael Hoelker
- Department of Animal Science, Biotechnology and Reproduction of Farm Animals, University of Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Wang C, Tu H, Yang L, Ma C, Hu J, Luo J, Wang H. FOXN3 inhibits cell proliferation and invasion via modulating the AKT/MDM2/p53 axis in human glioma. Aging (Albany NY) 2021; 13:21587-21598. [PMID: 34511432 PMCID: PMC8457572 DOI: 10.18632/aging.203499] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022]
Abstract
This study aimed to evaluate the biological role of forkhead box N3 (FOXN3) in human glioma and clarify the possible molecular mechanisms. FOXN3 expression patterns in clinical tissue specimens were characterized via qPCR and Western blotting. Kaplan-Meier survival curve was applied to assess the correlation between FOXN3 expression and overall survival. Effects of FOXN3 over-expression and depletion on glioma cell proliferation, apoptosis, migration and invasion were assessed by CCK8, colony formation assay, flow cytometry, scratch wound healing assay and Transwell invasion assay, respectively. Moreover, the involvement of AKT/murine double minute 2 (MDM2)/p53 pathway was evaluated. Additionally, tumor transplantation model assay was performed to determine the effects of FOXN3 over-expression on glioma cell growth in vivo. Results showed that FOXN3 was significantly down-regulated in glioma tissues compared with normal tissues. Patients with lower FOXN3 expression exhibited a shorter overall survival time. Gain- and loss-of-function analyses demonstrated that FOXN3 over-expression significantly suppressed proliferation, survival and motility of glioma cells, whereas FOXN3 knockdown remarkably promoted glioma cell proliferation, survival and motility. Furthermore, FOXN3 over-expression inhibited the activation of AKT/MDM2/p53 signaling pathway in glioma cells, while FOXN3 depletion facilitated its activation. Additionally, tumor xenograft assays revealed that FOXN3 over-expression retarded glioma cell growth in vivo. Collectively, these findings indicate that FOXN3 inhibits cell growth and invasion through inactivating the AKT/MDM2/p53 signaling pathway and that FOXN3-AKT/MDM2/p53 axis may represent a novel therapeutic target for glioma patients.
Collapse
Affiliation(s)
- Chaojia Wang
- Department of Neurosurgery, Taihe Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, China
| | - Hanjun Tu
- First School of Clinical Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Ling Yang
- Department of Pediatrics, Taihe Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, China
| | - Chunming Ma
- Department of Rehabilitation, Taihe Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, China
| | - Juntao Hu
- Department of Neurosurgery, Taihe Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, China
| | - Jie Luo
- Department of Neurosurgery, Taihe Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, China
| | - Hui Wang
- Department of Neurosurgery, Taihe Affiliated Hospital of Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
4
|
Zhang J, Wang Y, Mo W, Zhang R, Li Y. The clinical and prognostic significance of FOXN3 downregulation in acute myeloid leukaemia. Int J Lab Hematol 2020; 42:270-276. [PMID: 32078244 PMCID: PMC7317382 DOI: 10.1111/ijlh.13162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/05/2020] [Accepted: 01/17/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The expression of forkhead box N3 (FOXN3), also known as checkpoint suppressor 1 (CHES1), is reduced in many types of tumours. However, the clinical significance of FOXN3 and its potential role in acute myeloid leukaemia (AML) remain largely unknown. METHODS A total of 117 de novo AML patients newly diagnosed between December 2015 and January 2018 were included in this study. The expression of FOXN3 and its clinical significance were analysed in these AML patients. RESULTS The expression of FOXN3 was significantly downregulated in AML. In addition, lower FOXN3 expression was associated with older age and higher white blood cell counts. Moreover, a close correlation was observed between lower FOXN3 expression and a lower complete remission (CR) rate and shorter overall survival (OS), which was further analysed by multivariate analysis. CONCLUSION These data suggest that FOXN3 is a novel biomarker in AML and that lower FOXN3 expression predicts poor chemotherapy response and prognosis in AML.
Collapse
Affiliation(s)
- Jinjing Zhang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yue Wang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenbin Mo
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Rui Zhang
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Li
- Department of Hematology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|