1
|
Abdolvand M, Chermahini ZM, Bahaloo S, Emami MH, Fahim A, Rahimi H, Amjadi E, Maghool F, Rohani F, Dadkhah M, Farhadian N, Vatandoust N, Abdolvand S, Darehsari MR, Chehelgerdi M, Beni FA, Khodadoostan M, Hemati S, Salehi M. New long noncoding RNA biomarkers and ceRNA networks on miR-616-3p in colorectal cancer: Bioinformatics-based study. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2024; 29:10. [PMID: 38524750 PMCID: PMC10956565 DOI: 10.4103/jrms.jrms_786_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 10/18/2023] [Accepted: 11/01/2023] [Indexed: 03/26/2024]
Abstract
Background Cancer development is aided by the role of long noncoding RNAs (lncRNAs) that act as competing endogenous RNAs (ceRNAs) absorbing microRNAs (miRNAs). We aimed to discover a novel regulatory axis in colorectal cancer (CRC) and potential biomarkers based on miR-616-3p. Materials and Methods The gene expression omnibus database was mined for differentially expressed lncRNAs (DELs) and mRNAs. LncRNAs and mRNAs were predicted using the RegRNA and TargetScan databases. A combination of the ciBioPortal and Ensemble databases was used to locate the mRNAs. Cytoscape 3.7.1-built CeRNA networks. A quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to confirm the expression levels of these RNA molecules. Statistical analyses were implemented by GraphPad Prism 9. Results qRT-PCR showed (Linc01282, lnc-MYADM-1:1, and Zinc Finger Protein 347 [ZNF347]) were overexpressed whereas, (salt-inducible kinases 1 [SIK1], and miR-616-3p) were down regulated. Conclusion These results identify unique, unreported lncRNAs as CRC prognostic biomarkers, as well as prospective mRNAs as new treatment targets and predictive biomarkers for CRC. In addition, our study uncovered unexplored ceRNA networks that should be studied further in CRC.
Collapse
Affiliation(s)
- Mohammad Abdolvand
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Medical Genetics Research Center of Genome, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Mohammadi Chermahini
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Bahaloo
- Department of Biology, Faculty of Sciences, Yazd University, Yazd, Iran
| | - Mohammad Hassan Emami
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Fahim
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hojjatolah Rahimi
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Amjadi
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Maghool
- Poursina Hakim Digestive Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fattah Rohani
- Faculty of Veterinary Medicine of Shahrekord, Shahrekord, Iran
| | - Mina Dadkhah
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nooshin Farhadian
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasimeh Vatandoust
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Abdolvand
- Department of Genetics, Faculty of Sciences, Islamic Azad University, Shahrekord, Iran
| | | | - Mohammad Chehelgerdi
- Department of Genetics, Faculty of Sciences, Islamic Azad University, Shahrekord, Iran
| | - Faeze Ahmadi Beni
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Medical Genetics Research Center of Genome, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Khodadoostan
- Department of Gastroenterology and Hepatology, AlZahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Simin Hemati
- Department of Radiooncology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansoor Salehi
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Medical Genetics Research Center of Genome, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Ren W, Hu J, Li H, Chen J, Ding J, Zu X, Fan B. miR-616-5p Promotes Invasion and Migration of Bladder Cancer via Downregulating NR2C2 Expression. Front Oncol 2021; 11:762946. [PMID: 34956884 PMCID: PMC8695431 DOI: 10.3389/fonc.2021.762946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Background MicroRNAs, small non-coding RNA molecules with about 22 nucleotides in length, play a significant role in the development of bladder cancer. Previous studies found that miR-616-5p could promote the progress of cancers. However, its role in bladder cancer remains unclear. In the study, we aimed to demonstrate how miR-616-5p impacts the invasion and migration of bladder cancer and its potential downstream targets. Methods Firstly, qRT-PCR was used to detect the expression of miR-616-5p in normal bladder uroepithelial cell lines and bladder cancer cell lines. Then, chamber–transwell invasion and wound healing migration assays were used to detect the roles of miR-616-5p and NR2C2 in invasion and migration. Subsequently, Western blot was used to evaluate the regulation effects of miR-616-5p and NR2C2. Finally, luciferase assays were performed to manifest the mechanism of miR-616-5p and NR2C2 regulation. Results We found that miR-616-5p was upregulated in bladder cancer, and it could promote the invasion and migration of bladder cancer in vitro. Moreover, we demonstrated that NR2C2 was a downstream target of miR-616-5p. miR-616-5p could inhibit the expression of NR2C2 by binding to the 3′UTR of NR2C2 mRNA. Importantly, patients with a high expression of NR2C2 showed better prognoses in bladder cancer. Conclusions This study identifies that miR-616-5p can promote bladder cancer progression via altering the expression of NR2C2. Therefore, identifying miR-616-5p expression levels might be a useful strategy for developing potential therapeutic targets in bladder cancer.
Collapse
Affiliation(s)
- Wenbiao Ren
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiao Hu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Huihuang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Ding
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Benyi Fan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
miR-522 regulates cell proliferation, migration, invasion capacities and acts as a potential biomarker to predict prognosis in triple-negative breast cancer. Clin Exp Med 2021; 22:385-392. [PMID: 34518949 DOI: 10.1007/s10238-021-00757-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
This study was designed to explore the cell functions and prognostic significance of miR-522 in triple-negative breast cancer. The expression levels of miR-522 in triple-negative breast cancer tissues and cell lines were detected by quantitative real-time PCR analysis. Kaplan-Meier curve and Cox regression analysis were used to investigate the relationship between miR-522 expression and prognosis of patients, and to evaluate the possibility of miR-522 as a potential indicator for predicting the prognosis of triple-negative breast cancer. The CCK-8 and transwell assays were used to assess cell proliferation, migration, and invasion abilities. The expression of miR-522 in triple-negative breast cancer tissues was significantly higher than that in adjacent tissues and its high expression was closely associated with the high incidence of lymph node metastasis, advanced TNM stage, and BRCA1/2 mutation status. High expression of miR-522 is correlated with poor overall survival in patients with triple-negative breast cancer. Besides, functional studies in two triple-negative breast cancer cell lines showed that overexpression of miR-522 significantly promoted cell proliferation, migration, and invasion in vitro. BRCA1 was a potential direct target of miR-522. Our findings indicated that miR-522 was highly expressed in triple-negative breast cancer and was associated with poor prognosis of patients. The upregulation of miR-522 accelerated the progression of triple-negative breast cancer by targeting BRCA1. Therefore, miR-522 provides valuable information for the development of prevention and treatment strategies.
Collapse
|
4
|
Overexpression of microRNA-939-5p Contributes to Cell Proliferation and Associates Poor Prognosis in Glioma. Neuromolecular Med 2021; 23:531-539. [PMID: 33786745 DOI: 10.1007/s12017-021-08655-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022]
Abstract
Glioma is the main brain tumor worldwide and has a worse prognosis. MicroRNAs (miRNAs) are proved to involve in massive malignant tumors including glioma. In this study, we tried to detect the microRNA-939-5p (miR-939-5p) expression pattern and explore its prognostic significance in glioma. We performed the quantitative real-time PCR to examine the relative expression of miR-939-5p in glioma. The Kaplan-Meier method and Cox regression analysis were used to reveal the prognostic importance of miR-939-5p. The influence of miR-939-5p on cell proliferation, migration, and invasion was investigated by the Cell Counting kit-8 (CCK-8), colony formation assay, and Transwell assay. Besides, the target gene of miR-939-5p was provided by luciferase reporter assay. Our data substantiated the expression of miR-939-5p was obviously increased in glioma tissues and cell lines. The upregulation of miR-939-5p predicted a poor survival rate and might act as an alternative prognostic indicator in glioma. The elevated expression of miR-939-5p boosted proliferation, migration, and invasion in glioma cell lines. The alternation of miR-939-5p changed the protein expression of TIMP metallopeptidase inhibitor 2 (TIMP2). These findings indicated the overexpression of miR-939-5p was associated with the poor prognosis of glioma patients. MiR-939-5p may function as an oncogene by targeting TIMP2.
Collapse
|
5
|
Berberine Inhibits the Expression of SCT through miR-214-3p Stimulation in Breast Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2817147. [PMID: 33312221 PMCID: PMC7719527 DOI: 10.1155/2020/2817147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/21/2020] [Accepted: 10/24/2020] [Indexed: 12/21/2022]
Abstract
In this study, we aimed to evaluate the suppressive abilities of berberine (BBR) on MCF-7 and MDA-MB-231 cells and confirm its underlying mechanisms on miR-214-3p. We first built a panel of 18 miRNAs and 9 lncRNAs that were reported to participate in the mechanism of breast cancer. The RT-qPCR results suggested that BBR illustrated a dosage-dependent pattern in the stimulation to miR-214-3p in both MCF-7 and MDA-MB-231 cells. Then, we performed gain-and-lose function tests to validate the role of miR-214-3p contributing to the anticancer effects of BBR. Both BBR and miR-214-3p mimic reduced the cell viability, repressed migration and invasion capacities, increased rates of total apoptotic cells and ratio of Bax/Bcl-2, and increased the percentage of G2/M cells of MCF-7 and MDA-MB-231 cells by colony formation and CKK8 assay, scratch wound healing and gelatin-based 3D conformation assay, transwell invasion assay, and cell cycle analysis, respectively. However, miR-214-3p inhibitor counteracted all these effects of BBR. Based on the bioinformatics analysis and dual-luciferase reporter test, we identified binding sites between SCT and miR-214-3p. We further confirmed that BBR massively and dose-dependently reduced the mRNA expression and protein levels of SCT in both MCF-7 and MDA-231 cells. We testified that both miR-214-3p mimic and BBR could decrease the mRNA expression and protein levels of SCT, while miR-214-3p inhibitor weakened these reductions. In conclusion, BBR suppressed MCF-7 and MDA-MB-231 breast cancer cells by upregulating miR-214-3p and increasing its inhibition to SCT.
Collapse
|