1
|
Wu J, Zhang C, Li H, Zhang S, Chen J, Qin L. Competing endogenous RNAs network dysregulation in oral cancer: a multifaceted perspective on crosstalk and competition. Cancer Cell Int 2024; 24:431. [PMID: 39725978 DOI: 10.1186/s12935-024-03580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Oral cancer progresses from asymptomatic to advanced stages, often involving cervical lymph node metastasis, resistance to chemotherapy, and an unfavorable prognosis. Clarifying its potential mechanisms is vital for developing effective theraputic strategies. Recent research suggests a substantial involvement of non-coding RNA (ncRNA) in the initiation and advancement of oral cancer. However, the underlying roles and functions of various ncRNA types in the growth of this malignant tumor remain unclear. Competing endogenous RNAs (ceRNAs) refer to transcripts that can mutually regulate each other at the post-transcriptional level by vying for shared miRNAs. Networks of ceRNAs establish connections between the functions of protein-coding mRNAs and non-coding RNAs, including microRNA, long non-coding RNA, pseudogenic RNA, and circular RNA, piwi-RNA, snoRNA. A growing body of research has indicated that imbalances in ceRNAs networks play a crucial role in various facets of oral cancer, including development, metastasis, migration, invasion, and inflammatory responses. Hence, delving into the regulatory pathways of ceRNAs in oral cancer holds the potential to advance our understanding of the pathological mechanisms, facilitate early diagnosis, and foster targeted drug development for this malignancy. The present review summarized the fundamental role of ceRNA network, discussed the limitations of current ceRNA applications, which have been improved through chemical modification and carrier delivery as new biomarkers for diagnosis and prognosis is expected to offer a groundbreaking therapeutic approach for individuals with oral cancer.
Collapse
Affiliation(s)
- Jiajun Wu
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Chanjuan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Hongfang Li
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Shuo Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jingxin Chen
- Department of Oral and Maxillofacial Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311, China.
- School of Pharmacy, Hunan University of Chinese Medicine, 300 Xueshi Road, Hanpu Science and Education District, Changsha, Hunan, 410208, China.
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
2
|
Kondoh N, Mizuno-Kamiya M. The Role of Immune Modulatory Cytokines in the Tumor Microenvironments of Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2022; 14:cancers14122884. [PMID: 35740551 PMCID: PMC9221278 DOI: 10.3390/cancers14122884] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 01/04/2023] Open
Abstract
Simple Summary Malignant phenotypes of head and neck squamous cell carcinomas (HNSCCs) are regulated by the pro- and anti-tumoral activities of immune modulatory cytokines associated with tumor microenvironments (TMEs). We first present the immune modulatory effects of pro-inflammatory cytokines, pro- and anti- (pro-/anti-) inflammatory cytokines, and anti-inflammatory cytokines upon HNSCC phenotypes. We then report our evaluation of the functions of cytokines and chemokines that mediate the crosstalk between tumors and stromal cells, including cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), plasmacytoid dendritic cells (pDCs), and tumor-associated macrophages (TAMs). In HNSCCs, the status of lymph node metastasis is an important hallmark of a worse prognosis. Several chemokines mediate lymph node metastases in HNSCC patients. There are therapeutic approaches, using antitumoral cytokines or immunotherapies, that target cytokines, chemokines, or signal molecules essential for the immune evasion of HNSCCs. Finally, modulation by human papilloma virus (HPV) infection in HNSCC phenotypes and the prognostic significance of serum cytokine levels in HNSCC patients are discussed. Abstract HNSCCs are the major progressive malignancy of the upper digestive and respiratory organs. Malignant phenotypes of HNSCCs are regulated by the pro- and anti-tumoral activities of the immune modulatory cytokines associated with TMEs, i.e., a representative pro-inflammatory cytokine, interferon (IFN)-γ, plays a role as an anti-tumor regulator against HNSCCs; however, IFN-γ also drives programmed death-ligand (PD-L) 1 expression to promote cancer stem cells. Interleukin (IL)-2 promotes the cytotoxic activity of T cells and natural killer cells; however, endogenous IL-2 can promote regulatory T cells (Tregs), resulting in the protection of HNSCCs. In this report, we first classified and mentioned the immune modulatory aspects of pro-inflammatory cytokines, pro-/anti-inflammatory cytokines, and anti-inflammatory cytokines upon HNSCC phenotypes. In the TME of HNSCCs, pro-tumoral immune modulation is mediated by stromal cells, including CAFs, MDSCs, pDCs, and TAMs. Therefore, we evaluated the functions of cytokines and chemokines that mediate the crosstalk between tumor cells and stromal cells. In HNSCCs, the status of lymph node metastasis is an important hallmark of a worse prognosis. We therefore evaluated the possibility of chemokines mediating lymph node metastases in HNSCC patients. We also mention therapeutic approaches using anti-tumoral cytokines or immunotherapies that target cytokines, chemokines, or signal molecules essential for the immune evasion of HNSCCs. We finally discuss modulation by HPV infection upon HNSCC phenotypes, as well as the prognostic significance of serum cytokine levels in HNSCC patients.
Collapse
Affiliation(s)
- Nobuo Kondoh
- Department of Oral Biochemistry, Asahi University School of Dentistry, Mizuho 501-0296, Gifu, Japan
- Correspondence: ; Tel.: +81-58-329-1416; Fax: +81-58-329-1417
| | - Masako Mizuno-Kamiya
- Chemistry Laboratory, Department of Business Administration, Asahi University School of Business Administration, Mizuho 501-0296, Gifu, Japan;
| |
Collapse
|
3
|
Rong L, Chen B, Liu K, Liu B, He X, Liu J, Li J, He M, Zhu L, Liu K, Shi X, Shuai Y, Jin L. CircZDBF2 up-regulates RNF145 by ceRNA model and recruits CEBPB to accelerate oral squamous cell carcinoma progression via NFκB signaling pathway. J Transl Med 2022; 20:148. [PMID: 35365168 PMCID: PMC8973790 DOI: 10.1186/s12967-022-03347-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/10/2022] [Indexed: 11/26/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC), as one of the commonest malignancies showing poor prognosis, has been increasingly suggested to be modulated by circular RNAs (circRNAs). Through GEO (Gene Expression Omnibus) database, a circRNA derived from ZDBF2 (circZDBF2) was uncovered to be with high expression in OSCC tissues, while how it may function in OSCC remains unclear. Methods CircZDBF2 expression was firstly verified in OSCC cells via qRT-PCR. CCK-8, along with colony formation, wound healing, transwell and western blot assays was performed to assess the malignant cell behaviors in OSCC cells. Further, RNA pull down assay, RIP assay, as well as luciferase reporter assay was performed to testify the interaction between circZDBF2 and RNAs. Results CircZDBF2 expressed at a high level in OSCC cells and it accelerated OSCC cell proliferation, migration, invasion as well as EMT (epithelial-mesenchymal transition) process. Further, circZDBF2 sponged miR-362-5p and miR-500b-5p in OSCC cells to release their target ring finger protein 145 (RNF145). RNF145 expressed at a high level in OSCC cells and circZDBF2 facilitated RNF145 transcription by recruiting the transcription factor CCAAT enhancer binding protein beta (CEBPB). Moreover, RNF145 activated NFκB (nuclear factor kappa B) signaling pathway and regulated IL-8 (C-X-C motif chemokine ligand 8) transcription. Conclusion CircZDBF2 up-regulated RNF145 expression by sponging miR-362-5p and miR-500b-5p and recruiting CEBPB, thereby promoting OSCC progression via NFκB signaling pathway. The findings recommend circZDBF2 as a probable therapeutic target for OSCC. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03347-1.
Collapse
Affiliation(s)
- Liang Rong
- Department of Stomatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Bo Chen
- Department of Stomatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Ke Liu
- Department of Stomatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Bingyao Liu
- Department of Stomatology, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, Jiangsu, China
| | - Xinyao He
- Department of Stomatology, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, Jiangsu, China.,Department of Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210002, Jiangsu, China
| | - Juan Liu
- Department of Stomatology, Jinling Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Junxia Li
- Department of Stomatology, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, Jiangsu, China
| | - Maodian He
- Department of Stomatology, Jinling Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lei Zhu
- Department of Stomatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Ke Liu
- Department of Stomatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Xiaolei Shi
- Department of Stomatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Yi Shuai
- Department of Stomatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China.
| | - Lei Jin
- Department of Stomatology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
4
|
Dholariya S, Singh RD, Radadiya M, Parchwani D, Sharma G, Mir R. Role of the Tumor Microenvironment and the Influence of Epigenetics on the Tumor Microenvironment in Oral Carcinogenesis: Potential Implications. Crit Rev Oncog 2022; 27:47-64. [PMID: 37199302 DOI: 10.1615/critrevoncog.2022047088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Oral cancer has become a significant problem throughout the world, particularly in countries that are still developing. Recent literature supports the contribution of components of the tumor microenvironment (TME) and the effect of epigenetic changes happening in the cells of the TME on oral cancer development and progression. In this review, we comprehensively examine the significance of TME in the development of OC along with the current understanding of the epigenetic modifications that regulate the TME and their cohesive impact on tumor traits and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Sagar Dholariya
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | - Ragini D Singh
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Rajkot, Gujarat, India
| | | | | | | | - Rashid Mir
- Department of Medical Lab Technology, University of Tabuk, Kingdom of Saudi Arabia, Tabuk, India
| |
Collapse
|
5
|
Lequerica-Fernández P, Suárez-Canto J, Rodriguez-Santamarta T, Rodrigo JP, Suárez-Sánchez FJ, Blanco-Lorenzo V, Domínguez-Iglesias F, García-Pedrero JM, de Vicente JC. Prognostic Relevance of CD4 +, CD8 + and FOXP3 + TILs in Oral Squamous Cell Carcinoma and Correlations with PD-L1 and Cancer Stem Cell Markers. Biomedicines 2021; 9:biomedicines9060653. [PMID: 34201050 PMCID: PMC8227658 DOI: 10.3390/biomedicines9060653] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
This study investigates the relevance of tumor-infiltrating lymphocytes (TILs) in oral squamous cell carcinoma (OSCC). Immunohistochemical analysis of stromal/tumoral CD4+, CD8+ and FOXP3+ TILs is performed in 125 OSCC patients. Potential relationships with the expression of tumoral PD-L1 and cancer stem cell (CSC) markers (NANOG, SOX2, OCT4, Nestin and Podoplanin (PDPN)) are assessed. CD4+ and CD8+ TILs are significantly associated with smoking and alcohol habits. CD4+ and CD8+ TILs show an inverse relationship with NANOG and SOX2 expression, and FOXP3+ TILs is significantly correlated with Nestin and PDPN expression. High infiltration of CD4+ and CD8+ TILs and a high tumoral CD8+/FOXP3+ ratio are significantly associated with tumors harboring positive PD-L1 expression. Infiltration of stromal/tumoral FOXP3+ TILs and a low stromal CD8+/FOXP3+ ratio are significantly associated with better disease-specific survival. Multivariate analysis reveals that the stromal CD8+/FOXP3+ TILs ratio is a significant independent prognostic factor. Regarding OSCC patient survival, the CD8+/FOXP3+ TILs ratio is an independent prognostic factor. TILs may act as biomarkers and potential therapeutic targets for OSCC.
Collapse
Affiliation(s)
- Paloma Lequerica-Fernández
- Department of Biochemistry, Hospital Universitario Central de Asturias (HUCA), C/Carretera de Rubín, s/n, 33011 Oviedo, Spain; (P.L.-F.); (F.J.S.-S.); (F.D.-I.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Carretera de Rubín, s/n, 33011 Oviedo, Spain; (T.R.-S.); (J.P.R.)
| | - Julián Suárez-Canto
- Department of Pathology, Hospital Universitario de Cabueñes, 33394 Gijón, Spain;
| | - Tania Rodriguez-Santamarta
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Carretera de Rubín, s/n, 33011 Oviedo, Spain; (T.R.-S.); (J.P.R.)
- Department of Oral and Maxillofacial Surgery, Hospital Universitario Central de Asturias (HUCA), C/Carretera de Rubín, s/n, 33011 Oviedo, Spain
| | - Juan Pablo Rodrigo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Carretera de Rubín, s/n, 33011 Oviedo, Spain; (T.R.-S.); (J.P.R.)
- Department of Otolaryngology, Hospital Universitario Central de Asturias (HUCA), C/Carretera de Rubín, s/n, 33011 Oviedo, Spain
- Department of Surgery, University of Oviedo, 33006 Oviedo, Spain
- Ciber de Cancer (CIBERONC), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Faustino Julián Suárez-Sánchez
- Department of Biochemistry, Hospital Universitario Central de Asturias (HUCA), C/Carretera de Rubín, s/n, 33011 Oviedo, Spain; (P.L.-F.); (F.J.S.-S.); (F.D.-I.)
| | - Verónica Blanco-Lorenzo
- Department of Pathology, Hospital Universitario Central de Asturias (HUCA), C/Carretera de Rubín, s/n, 33011 Oviedo, Spain;
| | - Francisco Domínguez-Iglesias
- Department of Biochemistry, Hospital Universitario Central de Asturias (HUCA), C/Carretera de Rubín, s/n, 33011 Oviedo, Spain; (P.L.-F.); (F.J.S.-S.); (F.D.-I.)
| | - Juana María García-Pedrero
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Carretera de Rubín, s/n, 33011 Oviedo, Spain; (T.R.-S.); (J.P.R.)
- Ciber de Cancer (CIBERONC), Instituto de Salud Carlos III, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Correspondence: (J.M.G.-P.); (J.C.d.V.); Tel.: +34-985-107937 (J.M.G.-P.); +34-85-103638 (J.C.d.V.)
| | - Juan Carlos de Vicente
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Carretera de Rubín, s/n, 33011 Oviedo, Spain; (T.R.-S.); (J.P.R.)
- Department of Oral and Maxillofacial Surgery, Hospital Universitario Central de Asturias (HUCA), C/Carretera de Rubín, s/n, 33011 Oviedo, Spain
- Department of Surgery, University of Oviedo, 33006 Oviedo, Spain
- Correspondence: (J.M.G.-P.); (J.C.d.V.); Tel.: +34-985-107937 (J.M.G.-P.); +34-85-103638 (J.C.d.V.)
| |
Collapse
|
6
|
Mechanism of tumour microenvironment in the progression and development of oral cancer. Mol Biol Rep 2021; 48:1773-1786. [PMID: 33492572 DOI: 10.1007/s11033-020-06054-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/01/2020] [Indexed: 01/19/2023]
Abstract
Oral cancer has been a major problem all across the globe, majorly in the developing countries. With a growing emphasis in the field of cancer research, the contribution of the tumour microenvironment has been gaining a lot of importance in identifying the role of components other than the tumour cells that cause the development of cancer, thus changing the outlook. The review will shed light on the studies that describe the role of microenvironment, its components as well as summarize the studies related to their mechanism in the progression of oral cancer. The literature for the review was derived mainly from Google Scholar and PubMed, in particular concentrating on the most recent papers published in 2019 and 2020, by using the keywords "Cancer, Oral Cancer, Metastasis, OSCC, Tumour microenvironment, CAFs, ECM, Cytokines, Hypoxia, Therapeutics targeting the microenvironment". The study provides insight into the world of micro-environmental regulation of oral cancer, the mechanism by which they interact and how to exploit it as a potential therapeutic haven for treating the disease. The components Cancer-Associated Fibroblasts (CAFs), Tumour-associated Macrophages (TAMs), Tumour-associated neutrophils (TANs), Hypoxic environment, myeloid-derived stem cells (MDSCs) and T regulatory (Tregs) cells and underlying mechanisms that control them will be the targets of study to understand the microenvironment.
Collapse
|
7
|
Wang T, Cao L, Dong X, Wu F, De W, Huang L, Wan Q. LINC01116 promotes tumor proliferation and neutrophil recruitment via DDX5-mediated regulation of IL-1β in glioma cell. Cell Death Dis 2020; 11:302. [PMID: 32358484 PMCID: PMC7195423 DOI: 10.1038/s41419-020-2506-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023]
Abstract
Tumor-associated neutrophils (TANs) are important inflammatory infiltrating cells in the tumor microenvironment and are closely related to the development of human tumor. However, the underlying mechanism of TANs recruiting to glioma remains unknown. Herein, we identified that LINC01116 was significantly upregulated in glioma, and positively correlated with clinical malignancy and survival prognosis. LINC01116 regulated the progression of glioma in vitro and in vivo. RNA-seq analysis demonstrated that LINC01116 knockdown affected the expression of IL-1β, which promoted glioma proliferation and neutrophil recruitment. Furthermore, the co-culture of glioma cells and neutrophils showed that the accumulation of TANs promoted tumor proliferation via producing a host of cytokines. Mechanistically, LINC01116 activated IL-1β expression by recruiting the transcriptional regulator DDX5 to the IL-1β promoter. Our findings reveal that LINC01116 can promote glioma proliferation and neutrophil recruitment by regulating IL-1β, and may be served as a novel target for glioma therapy and prognosis.
Collapse
Affiliation(s)
- Teng Wang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lihua Cao
- Department of Neurology, Nanjing PuKou Central Hospital, Nanjing, Jiangsu Province, China
| | - Xin Dong
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Fei Wu
- Medical School of Southeast University, Nanjing, Jiangsu Province, China
| | - Wei De
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lin Huang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Qi Wan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|