1
|
Cheng X, Luo J, Cao J. Identification of HOXC Gene Family as Prognostic and Immune-Related Biomarkers in Breast Cancer Through mRNA Transcriptional Profile and Experimental Validation. Biochem Genet 2024:10.1007/s10528-024-10884-5. [PMID: 38995528 DOI: 10.1007/s10528-024-10884-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Breast cancer (BC) is the most common malignancy in women worldwide, and more effective biomarkers are urgently needed for the prevention and treatment of BC. Our study aimed to investigate the role of the HOXC gene family (HOXCs) and its relationship with the immune response in BC. The differential expression of HOXCs and its clinical prognostic significance in BC were explored using bioinformatics analysis, and the cBioPortal database was used to evaluate the genetic mutation profile of the HOXCs in BC. The results indicated that the expression levels of HOXC4, 10, 11, 12, and 13 were significantly increased in BC tissues compared with the normal tissues, and expressions of these genes were closely associated with BC stage, among them, high expression levels of HOXC10 and HOXC13 predicted poor outcome in BC patients. In addition, to elucidate the essential role of HOXCs in the tumor microenvironment and immunotherapeutic response of BC, the impact of HOXCs on the regulation of immune infiltration in BC was comprehensively assessed. The result showed that HOXC10 and HOXC13 expressions were significantly positively linked with the infiltration levels of CD8+T cell and M1 macrophage, while they were negatively related to Mast and Natural killer cells, suggesting the important influence of HOXCs on regulating tumor immunity in BC patients. Lastly, the RT-qPCR assay was employed to validate HOXCs expression in samples of BC patients. In conclusion, HOXCs may be a promising prognostic indicator and could regulate the immune infiltration in BC patients, thus being a promising targeted immunotherapy for BC.
Collapse
Affiliation(s)
- Xiongtao Cheng
- Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jie Luo
- Department of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Jianxiong Cao
- Department of Oncology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
2
|
Oh JH, Kim CY, Jeong DS, Kim YC, Kim MH, Cho JY. The homeoprotein HOXB2 limits triple-negative breast carcinogenesis via extracellular matrix remodeling. Int J Biol Sci 2024; 20:1045-1063. [PMID: 38322121 PMCID: PMC10845296 DOI: 10.7150/ijbs.88837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/31/2023] [Indexed: 02/08/2024] Open
Abstract
Homeobox genes and their encoded DNA-binding homeoproteins are master regulators of development. Consequently, these homeotic elements may regulate key steps in cancer pathogenesis. Here, using a combination of in silico analyses of large-scale patient datasets, in vitro RNAi phenotyping, and in vivo validation studies, we investigated the role of HOXB2 in different molecular subtypes of human breast cancer (BC). The gene expression signatures of HOXB2 are different across distinct BC subtypes due to various genetic alterations, but HOXB2 was specifically downregulated in the aggressive triple-negative subtype (TNBC). We found that the reduced expression of HOXB2 was correlated with the metastatic abilities (epithelial-to-mesenchymal transition) of TNBC cells. Further, we revealed that HOXB2 restrained TNBC aggressiveness by ECM organization. HOXB2 bound to the promoter regions of MATN3 and ECM2 and regulated their transcription levels. Forced expression of HOXB2 effectively prevented TNBC progression and metastasis in a mouse xenograft model. Reduction of HOXB2 and the HOXB2/MATN3/ECM2 transcriptional axis correlated with poor survival in patients with various cancers. Further, we found the long non-coding RNA HOXB-AS1 in complex with SMYD3, a lysine methyltransferase, as an epigenetic switch controlling HOXB2 expression. Overall, our results indicate a tumor-suppressive role of HOXB2 by maintaining ECM organization and delineate potential clinical utility of HOXB2 as a marker for TNBC patients.
Collapse
Affiliation(s)
- Ji Hoon Oh
- Department of Biological Sciences, Keimyung University College of Natural Sciences, Daegu, Republic of Korea
| | - Clara Yuri Kim
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Da Som Jeong
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yu Cheon Kim
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myoung Hee Kim
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Je-Yoel Cho
- Department of Biochemistry, Brain Korea 21 Project and Research Institute for Veterinary Science, Seoul National University College of Veterinary Medicine, Seoul, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Li M, Bai G, Cen Y, Xie Q, Chen J, Chen J, Chen Q, Zhong W, Zhou X. Silencing HOXC13 exerts anti-prostate cancer effects by inducing DNA damage and activating cGAS/STING/IRF3 pathway. J Transl Med 2023; 21:884. [PMID: 38057852 PMCID: PMC10701956 DOI: 10.1186/s12967-023-04743-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Advanced prostate cancer (PCa) will develop into castration-resistant prostate cancer (CRPC) and lead to poor prognosis. As the primary subtype of CRPC, CRPC-AR accounts for the major induction of PCa heterogeneity. CRPC-AR is mainly driven by 25 transcription factors (TFs), which we speculate may be the key factors driving PCa toward CRPC. Therefore, it is necessary to clarify the key regulator and its molecular mechanism mediating PCa progression. METHODS Firstly, we downloaded transcriptomic data and clinical information from TCGA-PRAD. The characteristic gene cluster was identified by PPI clustering, GO enrichment, co-expression correlation and clinical feature analyses for 25 TFs. Then, the effects of 25 TFs expression on prognosis of PCa patients was analyzed using univariate Cox regression, and the target gene was identified. The expression properties of the target gene in PCa tissues were verified using tissue microarray. Meanwhile, the related mechanistic pathway of the target gene was mined based on its function. Next, the target gene was silenced by small interfering RNAs (siRNAs) for cellular function and mechanistic pathway validation. Finally, CIBERSORT algorithm was used to analyze the infiltration levels of 22 immune cells in PCa patients with low and high expression of target gene, and validated by assaying the expression of related immunomodulatory factor. RESULTS We found that HOX family existed independently in 25 TFs, among which HOXC10, HOXC12 and HOXC13 had unique clinical features and the PCa patients with high HOXC13 expression had the worst prognosis. In addition, HOXC13 was highly expressed in tumor tissues and correlated with Gleason score and pathological grade. In vitro experiments demonstrated that silencing HOXC13 inhibited 22RV1 and DU145 cell function by inducing cellular DNA damage and activating cGAS/STING/IRF3 pathway. Immune infiltration analysis revealed that high HOXC13 expression suppressed infiltration of γδ T cells and plasma cells and recruited M2 macrophages. Consistent with these results, silencing HOXC13 up-regulated the transcriptional expression of IFN-β, CCL2, CCL5 and CXCL10. CONCLUSION HOXC13 regulates PCa progression by mediating the DNA damage-induced cGAS/STING/IRF3 pathway and remodels TIME through regulation of the transcription of the immune factors IFN-β, CCL2, CCL5 and CXCL10.
Collapse
Affiliation(s)
- Maozhang Li
- School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Guangwei Bai
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Yi Cen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Qitong Xie
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Jiahong Chen
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Jia Chen
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Qingbiao Chen
- Department of Urology, The Second People's Hospital of Foshan, Affiliated Foshan Hospital of Southern Medical University, Foshan, 528000, China
| | - Weide Zhong
- School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Xiaobo Zhou
- Department of Urology, Huizhou Municipal Central Hospital, Huizhou, 516001, China.
| |
Collapse
|
4
|
Li H, Gao P, Chen H, Zhao J, Zhang X, Li G, Wang L, Qin L. HOXC13 promotes cell proliferation, metastasis and glycolysis in breast cancer by regulating DNMT3A. Exp Ther Med 2023; 26:439. [PMID: 37614427 PMCID: PMC10443053 DOI: 10.3892/etm.2023.12138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/25/2023] [Indexed: 08/25/2023] Open
Abstract
Breast cancer (BC) is a life-threatening malignant tumor that affects females more commonly than males. The mechanisms underlying BC proliferation, metastasis and glycolysis require further investigation. Homeobox C13 (HOXC13) is highly expressed in BC; however, the specific mechanisms in BC are yet to be fully elucidated. Therefore, the aim of the present study was to investigate the role of HOXC13 in BC proliferation, migration, invasion and glycolysis. In the present study, the UALCAN database was used to predict the expression levels of HOXC13 in patients with BC. Western blot analysis and reverse transcription-quantitative PCR were used to determine the expression levels of HOXC13 in BC cell lines. Moreover, HOXC13 knockdown was induced using cell transfection, and the viability, proliferation and apoptosis of cells were detected using Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine staining and flow cytometry. Migration, invasion and epithelial-mesenchymal transition (EMT) were measured using wound healing assay, Transwell assay and western blotting. In addition, XF96 extracellular flux analyzer and corresponding kits were used to detect glycolysis. The JASPAR database was used to predict promoter binding sites for the transcription factors HOXC13 and DNA methyltransferase 3α (DNMT3A). HOXC13 expression was silenced and DNMT3A was simultaneously overexpressed using cell transfection. The results of the present study revealed that HOXC13 expression was significantly elevated in BC tissues and cells. Following HOXC13 knockdown in BC cells, the viability, proliferation, glycolysis, migration, invasion and EMT were significantly decreased, and apoptosis was significantly increased. In addition, HOXC13 positively regulated the transcription of DNMT3A in BC cells, thus playing a regulatory role in the malignant progression of cells. In conclusion, HOXC13 promoted cell viability, proliferation, migration, invasion, EMT and glycolysis in BC by regulating DNMT3A.
Collapse
Affiliation(s)
- Hongrui Li
- Department of Thyroid and Breast Diseases, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Department of Thyroid and Breast Diseases, Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| | - Pengcheng Gao
- Department of Thyroid and Breast Diseases, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Department of Thyroid and Breast Diseases, Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| | - Haifeng Chen
- Department of Thyroid and Breast Diseases, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Department of Thyroid and Breast Diseases, Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| | - Junjie Zhao
- Department of Thyroid and Breast Diseases, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Department of Thyroid and Breast Diseases, Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| | - Xiangzhong Zhang
- Department of Thyroid and Breast Diseases, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Department of Thyroid and Breast Diseases, Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| | - Ganggang Li
- Department of Thyroid and Breast Diseases, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Department of Thyroid and Breast Diseases, Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| | - Liting Wang
- Department of Thyroid and Breast Diseases, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Department of Thyroid and Breast Diseases, Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| | - Long Qin
- Department of Thyroid and Breast Diseases, Jincheng People's Hospital, Jincheng, Shanxi 048000, P.R. China
- Department of Thyroid and Breast Diseases, Jincheng Hospital Affiliated to Changzhi Medical College, Jincheng, Shanxi 048000, P.R. China
| |
Collapse
|
5
|
Han Q, Yan P, Song R, Liu F, Tian Q. HOXC13-driven TIMM13 overexpression promotes osteosarcoma cell growth. Cell Death Dis 2023; 14:398. [PMID: 37407582 DOI: 10.1038/s41419-023-05910-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
TIMM13 (translocase of inner mitochondrial membrane 13) located at the mitochondrial intermembrane space is vital for the integrity and function of mitochondria. We found that the mitochondrial protein TIMM13 is upregulated in human OS tissues and cells. In patient-derived primary OS cells and established cell lines, TIMM13 shRNA or knockout provoked mitochondrial dysfunction, causing mitochondrial depolarization, reactive oxygen species production, and oxidative injury, as well as lipid peroxidation, DNA damage, and ATP depletion. Moreover, TIMM13 depletion provoked OS cell apoptosis and inhibited cell proliferation and migration. Conversely, ectopic TIMM13 overexpression increased ATP contents, enhancing OS cell proliferation and migration. Moreover, we discovered that Akt-mTOR activation was inhibited with TIMM13 depletion in primary OS cells. Further studies revealed that HOXC13 (Homeobox C13)-dependent TIMM13 transcription was significantly increased in OS tissues and cells. Whereas TIMM13 transcription and expression were decreased following HOXC13 silencing in primary OS cells. In vivo, TIMM13 KO potently inhibited OS xenograft growth in the proximal tibia of nude mice. TIMM13 KO also induced Akt-mTOR inactivation, ATP depletion, oxidative injury, and apoptosis in the in situ OS tumors. Together, upregulation of the mitochondrial protein TIMM13 is important for OS cell growth, representing a novel and promising therapeutic target.
Collapse
Affiliation(s)
- Qicai Han
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Penghui Yan
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruipeng Song
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feifei Liu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qing Tian
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
6
|
Guo T, Chu C, Wang Y, He M, Jia H, Sun Y, Wang D, Liu Y, Huo Y, Mu J. Lipid goal attainment in diabetes mellitus patients after acute coronary syndrome: a subanalysis of Dyslipidemia International Study II-China. BMC Cardiovasc Disord 2023; 23:337. [PMID: 37393236 PMCID: PMC10315034 DOI: 10.1186/s12872-023-03312-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/18/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Lipid management with a low-density lipoprotein cholesterol (LDL-C) goal of < 1.4 mmol/L is recommended for patients with acute coronary syndrome (ACS) and diabetes mellitus (DM) due to a high risk for adverse cardiovascular events. This study evaluated the lipid-lowering treatment (LLT) pattern and the LDL-C goal attainment rate in this special population. METHODS DM patients were screened from the observational Dyslipidemia International Study II-China study which assessed LDL-C goal attainment in Chinese ACS patients. The baseline characteristics between the LLT and no pre-LLT groups were compared. The proportions of patients obtaining LDL-C goal at admission and at 6-months, the difference from the goal, and the pattern of the LLT regimen were analyzed. RESULTS Totally 252 eligible patients were included, with 28.6% taking LLT at admission. Patients in the LLT group were older, had a lower percentage of myocardial infarction, and had decreased levels of LDL-C and total cholesterol compared to those in the no pre-LLT group at baseline. The overall LDL-C goal attainment rate was 7.5% at admission and increased to 30.2% at 6 months. The mean difference between the actual LDL-C value and LDL-C goal value dropped from 1.27 mmol/L at baseline to 0.80 mmol/L at 6 months. At 6 months, 91.4% of the patients received statin monotherapy, and only 6.9% received a combination of statin and ezetimibe. The atorvastatin-equivalent daily statin dosage was moderate during the study period. CONCLUSION The low rate of lipid goal attainment observed was in line with the outcomes of other DYSIS-China studies.
Collapse
Affiliation(s)
- Tongshuai Guo
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, 710061, Xi'an, China
| | - Chao Chu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, 710061, Xi'an, China
| | - Yang Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, 710061, Xi'an, China
| | - Mingjun He
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, 710061, Xi'an, China
| | - Hao Jia
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, 710061, Xi'an, China
| | - Yue Sun
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, 710061, Xi'an, China
| | - Dan Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, 710061, Xi'an, China
| | - Yan Liu
- Medical Affairs, Organon, China
| | - Yong Huo
- Department of Cardiovascular Medicine, Peking University First Hospital, Beijing, China.
- Department of Cardiology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, 100034, Beijing, China.
| | - Jianjun Mu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, 710061, Xi'an, China.
| |
Collapse
|
7
|
Shenoy US, Adiga D, Kabekkodu SP, Hunter KD, Radhakrishnan R. Molecular implications of HOX genes targeting multiple signaling pathways in cancer. Cell Biol Toxicol 2022; 38:1-30. [PMID: 34617205 PMCID: PMC8789642 DOI: 10.1007/s10565-021-09657-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022]
Abstract
Homeobox (HOX) genes encode highly conserved homeotic transcription factors that play a crucial role in organogenesis and tissue homeostasis. Their deregulation impacts the function of several regulatory molecules contributing to tumor initiation and progression. A functional bridge exists between altered gene expression of individual HOX genes and tumorigenesis. This review focuses on how deregulation in the HOX-associated signaling pathways contributes to the metastatic progression in cancer. We discuss their functional significance, clinical implications and ascertain their role as a diagnostic and prognostic biomarker in the various cancer types. Besides, the mechanism of understanding the theoretical underpinning that affects HOX-mediated therapy resistance in cancers has been outlined. The knowledge gained shall pave the way for newer insights into the treatment of cancer.
Collapse
Affiliation(s)
- U Sangeetha Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Keith D Hunter
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, UK
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
8
|
Wu G, Li X, Liu Y, Li Q, Xu Y, Wang Q. Study on HOXBs of Clear Cell Renal Cell Carcinoma and Detection of New Molecular Target. JOURNAL OF ONCOLOGY 2021; 2021:5541423. [PMID: 34306077 PMCID: PMC8282400 DOI: 10.1155/2021/5541423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/04/2021] [Accepted: 06/12/2021] [Indexed: 11/18/2022]
Abstract
Our study examined the transcriptional and survival data of HOXBs in patients with clear cell renal cell carcinoma (ccRCC) from the ONCOMINE database, Human Protein Atlas, and STRING website. We discovered that the expression levels of HOXB3/5/6/8/9 were significantly lower in ccRCC than in normal nephritic tissues. In ccRCC, patients with a high expression of HOXB2/5/6/7/8/9 mRNA have a higher overall survival (OS) than patients with low expression. Further analysis by the GSCALite website revealed that the methylation of HOXB3/5/6/8 in ccRCC was significantly negatively correlated to gene expression, while HOXB5/9 was positively correlated to the CCT036477 drug target. As DNA abnormal methylation is one of the mechanisms of tumorigenesis, we hypothesized that HOXB5/6/8/9 are potential therapeutic targets for patients with ccRCC. We analyzed the function of enrichment data of HOXBs in patients with ccRCC from the Kyoto Encyclopedia of Genes and Genomes pathway enrichment and the PANTHER pathway. The results of the analysis show that the function of HOXBs might be associated with the Wnt pathway and that HOXB5/6/8/9 was coexpressed with multiple Wnt pathway classical genes and proteins, such as MYC, CTNNB, Cyclin D1 (CCND1), and tumor protein P53 (TP53), which further confirms that HOXBs inhibit the growth of renal carcinoma cells through the Wnt signaling pathway. In conclusion, our analysis of the family of HOXBs and their molecular mechanism may provide a theoretical basis for further research.
Collapse
Affiliation(s)
- Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaowei Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yuanxin Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Quanlin Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China
| | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
9
|
Kotipalli A, Banerjee R, Kasibhatla SM, Joshi R. Analysis of H3K4me3-ChIP-Seq and RNA-Seq data to understand the putative role of miRNAs and their target genes in breast cancer cell lines. Genomics Inform 2021; 19:e17. [PMID: 34261302 PMCID: PMC8261273 DOI: 10.5808/gi.21020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/25/2021] [Indexed: 11/26/2022] Open
Abstract
Breast cancer is one of the leading causes of cancer in women all over the world and accounts for ~25% of newly observed cancers in women. Epigenetic modifications influence differential expression of genes through non-coding RNA and play a crucial role in cancer regulation. In the present study, epigenetic regulation of gene expression by in-silico analysis of histone modifications using chromatin immunoprecipitation sequencing (ChIP-Seq) has been carried out. Histone modification data of H3K4me3 from one normal-like and four breast cancer cell lines were used to predict miRNA expression at the promoter level. Predicted miRNA promoters (based on ChIP-Seq) were used as a probe to identify gene targets. Five triple-negative breast cancer (TNBC)‒specific miRNAs (miR153-1, miR4767, miR4487, miR6720, and miR-LET7I) were identified and corresponding 13 gene targets were predicted. Eight miRNA promoter peaks were predicted to be differentially expressed in at least three breast cancer cell lines (miR4512, miR6791, miR330, miR3180-3, miR6080, miR5787, miR6733, and miR3613). A total of 44 gene targets were identified based on the 3′-untranslated regions of downregulated mRNA genes that contain putative binding targets to these eight miRNAs. These include 17 and 15 genes in luminal-A type and TNBC respectively, that have been reported to be associated with breast cancer regulation. Of the remaining 12 genes, seven (A4GALT, C2ORF74, HRCT1, ZC4H2, ZNF512, ZNF655, and ZNF608) show similar relative expression profiles in large patient samples and other breast cancer cell lines thereby giving insight into predicted role of H3K4me3 mediated gene regulation via the miRNA-mRNA axis.
Collapse
Affiliation(s)
- Aneesh Kotipalli
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Pune 411008, India
| | - Ruma Banerjee
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Pune 411008, India
| | - Sunitha Manjari Kasibhatla
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Pune 411008, India
| | - Rajendra Joshi
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Pune 411008, India
| |
Collapse
|
10
|
Salah M, Zawam H, Fouad NB, Soliman N, Maksoud FAWA. Study of HOTAIR LncRNA in AML patients in context to FLT3-ITD and NPM1 mutations status. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00180-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Long non-coding RNAs (LncRNAs) have recently been considered promising biomarkers for oncogenesis due to their epigenetic regulatory effects. HOTAIR is one of the oncogenic LncRNAs that was previously studied in different non-hematological malignancies. The current study set out to detect the expression level of HOTAIR LncRNA in AML patients concerning their clinical characteristics, laboratory data, FLT3-ITD, and NPM1 mutations, as well as treatment outcome. This study included quantitative detection of HOTAIR gene expression in 47 cases of AML using quantitative reverse transcription polymerase chain reaction, as well as NPM1 and FLT3-ITD genotyping.
Results
The HOTAIR expression was significantly higher in AML patients 6.87 (0.001) than in normal controls 1.66 (0.004–6.82) (p 0.007). The HOTAIR expression level was affected by chemotherapy, and it was correlated to hemoglobin level (p 0.001), age, total leukocytic count (p 0.022), and NPM1 mutation (p 0.017). HOTAIR gene expression level showed a correlation to relapse-free survival in the study group (p 0.04).
Conclusion
HOTAIR is overexpressed in patients with acute myeloid leukemia (AML). HOTAIR pre-treatment and post-chemotherapy gene expression levels can predict chemosensitivity and relapse.
Collapse
|
11
|
Liu B, Li J, Li JM, Liu GY, Wang YS. HOXC-AS2 mediates the proliferation, apoptosis, and migration of non-small cell lung cancer by combining with HOXC13 gene. Cell Cycle 2021; 20:236-246. [PMID: 33427025 DOI: 10.1080/15384101.2020.1868161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the highest incidence and mortality of malignant tumors worldwide and has become a global public health problem. Long non-coding RNAs (LncRNAs) are expected to participate in the progression of NSCLC. This study aims to explore the effects and underlying mechanisms of LncRNA HOXC-AS2 on NSCLC cell proliferation, apoptosis, and migration. The Cell Counting Kit-8 (CCK-8) and clone formation assay were used to measure the A549 and HCC827 cell proliferation. The cell apoptosis and migration was respectively analyzed by flow cytometry and transwell assay. RNA immunoprecipitation (RIP) was used to detect the interaction between HOXC-AS2 and HOXC13. The expression of β-catenin, α-SMA, MMP-1, MMP-2 expression, E-cadherin, and Ki-67 expression were determined by Western blot or immunohistochemistry (IHC) assay. We found that HOXC-AS2 was significantly up-regulated in NSCLC tissues. Knockdown of HOXC-AS2 expression resulted in significant decreases in NSCLC cell proliferation, migration, and epithelial-mesenchymal transition (EMT) process marker proteins, simultaneously activated A549 and HCC827 cell apoptosis. RIP assay suggested that HOXC13 was a functional target for HOXC-AS2. And HOXC-AS2 and HOXC13 could positively regulate each other. Compared with the normal tissues, the mRNA level of HOXC13 was increased in NSCLC tissues. HOXC13 silencing counteracted increases of A549 and HCC827 cell proliferation and migration, as well as a decrease of cell apoptosis induced by HOXC-AS2 overexpression. Moreover, HOXC-AS2 silencing reduced tumor growth rate and Ki-67 expression in vivo. Taken together, HOXC-AS2 knockdown inhibited NSCLC cell proliferation and migration, as well as stimulated NSCLC cell apoptosis through regulation of HOXC13 expression.
Collapse
Affiliation(s)
- Bin Liu
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University , Chengdu, China.,Department of Medical Oncology, Sichuan Cancer Hospital &institute & School of Medicine, University of Electronic Science and Technology of China , Chengdu, China
| | - Jing Li
- Department of General Internal Medicine, Sichuan Cancer Hospital &institute & School of Medicine, University of Electronic Science and Technology of China , Chengdu, China
| | - Ji-Man Li
- Department of Pathology, Sichuan Cancer Hospital &institute & School of Medicine, University of Electronic Science and Technology of China , Chengdu, China
| | - Guang-Yuan Liu
- Ward 1, Department of Thoracic Surgery, Sichuan Cancer Hospital &institute & School of Medicine, University of Electronic Science and Technology of China , Chengdu, China
| | - Yong-Sheng Wang
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University , Chengdu, China
| |
Collapse
|
12
|
Gholami M, Zoughi M, Larijani B, M Amoli M, Bastami M. An in silico approach to identify and prioritize miRNAs target sites polymorphisms in colorectal cancer and obesity. Cancer Med 2020; 9:9511-9528. [PMID: 33073494 PMCID: PMC7774712 DOI: 10.1002/cam4.3546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/09/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) and obesity are linked clinical entities with a series of complex processes being engaged in their development. MicroRNAs (miRNAs) participate in these processes through regulating CRC and obesity‐related genes. This study aimed to develop an in silico approach to systematically identify and prioritize miRNAs target sites polymorphisms in obesity and CRC. Data from genome‐wide association studies (GWASs) were used to retrieve CRC and obesity‐associated variants. The polymorphisms that were resided in experimentally verified or computationally predicted miRNA target sites were retrieved and prioritized using a range of bioinformatics analyses. We found 6284 CRC and 38931 obesity unique variants. For CRC 33 haplotypes variants in 134 interactions were in miRNA targetome, while for obesity we found more than 935 unique interactions. Functionally prioritized SNPs revealed that, SNPs in 153 obesity and 50 CRC unique interactions were have disruptive effects on miRNA:mRNA integration by changing on target RNA secondary structure. Structural accessibility of target sites were decreased in 418 and 103 unique interactions and increased in 516 and 79 interactions, for obesity and CRC, respectively. The miRNA:mRNA hybrid stability was increased in 127 and 17 unique interactions and decreased in 33 and 24 interactions for the effect of obesity and CRC SNPs, respectively. In this study, seven SNPs with 15 interactions and three SNPs with four interactions were prioritized for obesity and CRC, respectively. These SNPs could be used for future studies for finding potential biomarkers for diagnoses, prognosis, or treatment of CRC and obesity.
Collapse
Affiliation(s)
- Morteza Gholami
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Zoughi
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa M Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Bastami
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|