1
|
Jiang F, Yu M, Liang Y, Ding K, Wang Y. Discovery of Novel Diaryl-Substituted Fused Heterocycles Targeting Katanin and Tubulin with Potent Antitumor and Antimultidrug Resistance Efficacy. J Med Chem 2024; 67:12118-12142. [PMID: 38996194 DOI: 10.1021/acs.jmedchem.4c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Disrupting microtubule dynamics has emerged as a promising strategy for cancer treatment. However, drug resistance remains a challenge hindering the development of microtubule-targeting agents. In this work, a novel class of diaryl substituted fused heterocycles were designed, synthesized, and evaluated, which were demonstrated as effective dual katanin and tubulin regulators with antitumor activity. Following three rounds of stepwise optimization, compound 21b, featuring a 3H-imidazo[4,5-b]pyridine core, displayed excellent targeting capabilities on katanin and tubulin, along with notable antiproliferative and antimetastatic effects. Mechanistic studies revealed that 21b disrupts the microtubule network in tumor cells, leading to G2/M cell cycle arrest and apoptosis induction. Importantly, 21b exhibited significant inhibition of tumor growth in MDA-MB-231 and A549/T xenograft tumor models without evident toxicity and side effects. In conclusion, compound 21b presents a novel mechanism for disrupting microtubule dynamics, warranting further investigation as a dual-targeted antitumor agent with potential antimultidrug resistance properties.
Collapse
Affiliation(s)
- Fuhao Jiang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Min Yu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yuru Liang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yang Wang
- School of Pharmacy, Fudan University, Shanghai 201203, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
2
|
Sharma A, Cipriano M, Ferrins L, Hajduk SL, Mensa-Wilmot K. Hypothesis-generating proteome perturbation to identify NEU-4438 and acoziborole modes of action in the African Trypanosome. iScience 2022; 25:105302. [PMID: 36304107 PMCID: PMC9593816 DOI: 10.1016/j.isci.2022.105302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/24/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022] Open
Abstract
NEU-4438 is a lead for the development of drugs against Trypanosoma brucei, which causes human African trypanosomiasis. Optimized with phenotypic screening, targets of NEU-4438 are unknown. Herein, we present a cell perturbome workflow that compares NEU-4438's molecular modes of action to those of SCYX-7158 (acoziborole). Following a 6 h perturbation of trypanosomes, NEU-4438 and acoziborole reduced steady-state amounts of 68 and 92 unique proteins, respectively. After analysis of proteomes, hypotheses formulated for modes of action were tested: Acoziborole and NEU-4438 have different modes of action. Whereas NEU-4438 prevented DNA biosynthesis and basal body maturation, acoziborole destabilized CPSF3 and other proteins, inhibited polypeptide translation, and reduced endocytosis of haptoglobin-hemoglobin. These data point to CPSF3-independent modes of action for acoziborole. In case of polypharmacology, the cell-perturbome workflow elucidates modes of action because it is target-agnostic. Finally, the workflow can be used in any cell that is amenable to proteomic and molecular biology experiments.
Collapse
Affiliation(s)
- Amrita Sharma
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA
| | - Michael Cipriano
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Lori Ferrins
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Stephen L. Hajduk
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Kojo Mensa-Wilmot
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA,Corresponding author
| |
Collapse
|
3
|
A review on epidermal growth factor receptor's role in breast and non-small cell lung cancer. Chem Biol Interact 2021; 351:109735. [PMID: 34742684 DOI: 10.1016/j.cbi.2021.109735] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/28/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022]
Abstract
Epithelial growth factor receptor (EGFR) is a cell surface transmembrane receptor that mediates the tyrosine signaling pathway to carry the extracellular messages inside the cell and thereby alter the function of nucleus. This leads to the generation of various protein products to up or downregulate the cellular function. It is encoded by cell erythroblastosis virus oncogene B1, so called C-erb B1/ERBB2/HER-2 gene that acts as a proto-oncogene. It belongs to the HER-2 receptor-family in breast cancer and responds best with anti-Herceptin therapy (anti-tyrosine kinase monoclonal antibody). HER-2 positive breast cancer patient exhibits worse prognosis without Herceptin therapy. Similar incidence and prognosis are reported in other epithelial neoplasms like EGFR + lung non-small cell carcinoma and glioblastoma (grade IV brain glial tumor). Present study highlights the role and connectivity of EGF with various cancers via signaling pathways, cell surface receptors mechanism, macromolecules, mitochondrial genes and neoplasm. Present study describes the EGFR associated gene expression profiling (in breast cancer and NSCLC), relation between mitrochondrial genes and carcinoma, and several in vitro and in vivo models to screen the synergistic effect of various combination treatments. According to this study, although clinical studies including targeted treatments, immunotherapies, radiotherapy, TKi-EGFR combined targeted therapy have been carried out to investigate the synergism of combination therapy; however still there is a gap to apply the scenarios of experimental and clinical studies for further developments. This review will give an idea about the transition from experimental to most advanced clinical studies with different combination drug strategies to treat cancer.
Collapse
|
4
|
Che J, Jin Z, Yan F, You J, Xie J, Chen B, Cheng G, Zhu H, He Q, Hu Y, Yang B, Cao J, Dong X. Discovery of 5,6-Bis(4-methoxy-3-methylphenyl)pyridin-2-amine as a WSB1 Degrader to Inhibit Cancer Cell Metastasis. J Med Chem 2021; 64:8621-8643. [PMID: 34060833 DOI: 10.1021/acs.jmedchem.1c00586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The gain of cell motility is an essential prerequisite for cancer metastasis. The ubiquitin ligase subunit WD repeat and SOCS box-containing 1 (WSB1) has been demonstrated to regulate hypoxia-driven tumor cell migration. However, there is still a lack of methods for discovering inhibitors targeting the WSB1 axis. Here, we employed phenotypic screening models and identified compound 4 that displayed migration inhibitory activity against WSB1-overexpressing cells. Further studies indicated that it may function as a WSB1 degrader, thus leading to the accumulation of the Rho guanosine diphosphate dissociation inhibitor 2 (RhoGDI2) protein, reversing the expression of downstream F-actin and formation of membrane ruffles, and disturbing the migration capacity of cancer cells. Moreover, compound 4 exhibited a promising in vivo anticancer metastatic effects. Our findings show the discovery of a new WSB1 degrader, providing a unique solution for the treatment of cancer metastasis.
Collapse
Affiliation(s)
- Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zegao Jin
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Fangjie Yan
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, P. R. China
| | - Jieqiong You
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jiangfeng Xie
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Binhui Chen
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Gang Cheng
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, P. R. China
| | - Hong Zhu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Cancer Center, Zhejiang University, Hangzhou 310058, P. R. China
| | - Qiaojun He
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, P. R. China
- Cancer Center, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yongzhou Hu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, P. R. China
| | - Ji Cao
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, P. R. China
- Cancer Center, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, P. R. China
- Cancer Center, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|