1
|
Song X, Rao H, Huang C, Huang M, Ma Y, Xin J, Hou J, Hu Z, He L, Pan F, Yang L, Guo Z. P4HB, a novel succinated protein, is essential for fumarate-induced cancer metastasis. Int J Biol Macromol 2025; 311:143885. [PMID: 40318732 DOI: 10.1016/j.ijbiomac.2025.143885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
Fumarate hydratase (FH) catalyzes the conversion of fumarate to malate in the tricarboxylic acid cycle. Its deficiency leads to fumarate accumulation, which is associated with kidney cancer metastasis, though the exact mechanisms remain unclear. Here, we identify prolyl 4-hydroxylase beta (P4HB) as a novel fumarate target in FH-deficient cancer cells that promotes migration and invasion. FH knockdown in human renal cancer cells significantly enhanced migratory and invasive capacities by 10- and 8-fold, respectively. Mechanistically, fumarate-induced succination stabilizes P4HB, promoting type I collagen production and enhancing tumor metastasis. P4HB knockdown markedly suppresses FH deficiency-induced metastasis in xenograft models. Fluorescence intensity in the FH knockdown group was about 10-fold higher, and tumor-bearing liver weight was approximately 1.5-fold greater than that in the FH and P4HB co-knockdown group. These results underscore the pivotal role of P4HB in metastasis. Additionally, we reveal NDP52 as a specific autophagy receptor that recognizes and binds to P4HB, mediating its degradation through the autophagy-lysosome pathway. However, succination of P4HB disrupts this recognition, interaction, and degradation, stabilizing P4HB. Together, these findings provide new insights into how fumarate-mediated succination affects P4HB protein stability and cancer metastasis, and suggest that P4HB could serve as a potential therapeutic target in FH-deficient cancers.
Collapse
Affiliation(s)
- Xinyi Song
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing 210023, China
| | - Haipeng Rao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing 210023, China
| | - Chunchun Huang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing 210023, China
| | - Miaoling Huang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing 210023, China
| | - Ying Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing 210023, China
| | - Jingyu Xin
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing 210023, China
| | - Jiajia Hou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing 210023, China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing 210023, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing 210023, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing 210023, China.
| | - Lingdong Yang
- School of Medicine, Nanjing University, Department of Obstetrics and Gynecology, Jinling Hospital, 305 Zhongshan East Road, Xuanwu District, Nanjing 210018, Jiangsu, China.
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wen Yuan Road, Nanjing 210023, China.
| |
Collapse
|
2
|
Dai C, Li Q, Wang L, Zhang J, Yang S, Zhang X. Long Noncoding LINC00115 Facilitates Cell Growth and Inhibits Apoptosis by Regulating the miR-4701-5p/P4HB Axis in Bladder Cancer. TOHOKU J EXP MED 2025; 265:69-81. [PMID: 39111879 DOI: 10.1620/tjem.2024.j075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Bladder cancer (BCa) is a prevalent urogenital malignancy, imposing a significant burden on health-care systems worldwide. Long noncoding RNAs (lncRNAs) are important regulators of carcinogenesis and affect BCa progression. In this study, the influence of lncRNA LINC00115 on malignant behavior of BCa cells were explored. Bioinformatics method was used for prediction of gene expression and downstream molecules of LIN00115. LINC00115 expression level in BCa cells was measured using RT-qPCR. After LINC00115 depletion, the proportion of viable, proliferative, and apoptotic BCa cells were calculated by methyl thiazolyl tetrazolium (MTT) assays, colony formation assays, and TUNEL staining, respectively. FISH was performed to verify the cellular distribution of LINC00115. The interaction between LINC00115 and miR-4701-5p and the binding between miR-4701-5p and P4HB were confirmed using RNA pulldown, RNA immunoprecipitation (RIP), and luciferase reporter assays. Experimental results showed that LINC00115 was highly expressed in BCa cells. The silencing of LINC00115 restrained BCa cell proliferation and stimulated apoptosis. LINC00115 could directly bind to miR-4701-5p and thus initiate P4HB upregulation in BCa cells. P4HB 3'untranslated region could be targeted by miR-4701-5p. Additionally, Amplification of P4HB expression offset the effects of LINC00115 knockdown on BCa cell proliferative and apoptotic behaviors. In conclusion, LINC00115 facilitates BCa cell growth and inhibits apoptosis via interaction with miR-4701-5p and upregulation of P4HB.
Collapse
Affiliation(s)
- Changyuan Dai
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College
| | - Qingwen Li
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College
| | - Lili Wang
- Department of Emergency medicine, The First Affiliated Hospital of Bengbu Medical College
| | - Jiajun Zhang
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College
| | - Shuai Yang
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College
| | - Xiaole Zhang
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College
| |
Collapse
|
3
|
Zhang L, Li YW, Xie T, Sun K, Huang X, Xiong W, Liu RJ. Potential role of P4HB in the tumor microenvironment and its clinical prognostic value: a comprehensive pan-cancer analysis and experimental validation with a focus on KIRC. Cancer Cell Int 2025; 25:1. [PMID: 39754183 PMCID: PMC11697512 DOI: 10.1186/s12935-024-03575-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/13/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Tumor microenvironment (TME) plays a crucial role in tumor growth and metastasis. Exploring biomarkers that are significantly associated with TME can help guide individualized treatment of patients. METHODS We analyzed the expression and survival of P4HB in pan-cancer through the TCGA database, and verified the protein level of P4HB by the HPA database. In addition, we used the Metascape database to construct protein-protein interaction networks and the single-cell Sequencing database for functional analysis. An immune cell infiltration analysis was performed to explore the potential role of P4HB in TME. We further analyze the relationship between P4HB and immune checkpoint molecules to explore the role of P4HB in immune checkpoint blockade therapy. Finally, the oncogenic role of P4HB in RCC cells was validated using colony formation and wound healing assays. RESULTS RNA and protein levels of P4HB were extensively up-regulated in pan-cancer. However, high P4HB expression was associated with poor survival in KIRC. The clinical relevance analyses of P4HB suggested that high P4HB expression was associated with advanced clinical TNM stage. Moreover, multivariate cox regression analysis indicated that P4HB (HR = 1.372, 95% CI 1.047-1.681, P = 0.019) was an independent risk factor for OS in KIRC. Functional analysis revealed that P4HB is involved in hypoxia, TME and immune system processes. Our study also found that high P4HB expression was significantly correlated with elevated infiltration levels in CD8 + T cells and M2 macrophages. The results of colony formation and wound healing assays showed that knockdown of P4HB inhibited the RCC growth and migration. CONCLUSIONS P4HB is a specific biomarker for KIRC prognosis and is significantly associated with clinical characteristics. In addition, P4HB may play an influential role in TME and is a biomarker for ICB therapy.
Collapse
Affiliation(s)
- Linxue Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yu-Wei Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Tianyi Xie
- Department of Neuroscience, Kenneth P. Dietrich School of Arts & Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ke Sun
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Xiang Huang
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Wei Xiong
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Rui-Ji Liu
- Department of Urology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
4
|
Yi Q, Zhu G, Zhu W, Wang J, Ouyang X, Yang K, Zhong J. Oncogenic mechanisms of COL10A1 in cancer and clinical challenges (Review). Oncol Rep 2024; 52:162. [PMID: 39392043 PMCID: PMC11487528 DOI: 10.3892/or.2024.8821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/14/2024] [Indexed: 10/12/2024] Open
Abstract
Collagen type X α1 chain (COL10A1), a gene encoding the α‑1 chain of type X collagen, serves a key role in conferring tensile strength and structural integrity to tissues. Upregulation of COL10A1 expression has been observed in different malignancies, including lung, gastric and pancreatic cancer, and is associated with poor prognosis. The present review provides an updated synthesis of the evolving biological understanding of COL10A1, with a particular focus on its mechanisms of action and regulatory functions within the context of tumorigenesis. For example, it has been established that increased COL10A1 expression promotes cancer progression by activating multiple signaling pathways, including the TGF‑β1/Smad, MEK/ERK and focal adhesion kinase signaling pathways, thereby inducing proliferation, invasion and migration. Additionally, COL10A1 has been demonstrated to induce epithelial‑mesenchymal transition and reshapes the extracellular matrix within tumor tissues. Furthermore, on the basis of methyltransferase‑like 3‑mediated N6‑methyladenosine methylation, COL10A1 intricately regulates the epitranscriptomic machinery, thereby augmenting its oncogenic role. However, although COL10A1 serves a pivotal role in gene transcription and the orchestration of tumor growth, the question of whether COL10A1 would serve as a viable therapeutic target remains a subject of scientific hypothesis requiring rigorous examination. Variables such as distinct tumor microenvironments and treatment associations necessitate further experimental validation. Therefore, a comprehensive assessment and understanding of the functional and mechanistic roles of COL10A1 in cancer may pave the way for the development of innovative cancer treatment strategies.
Collapse
Affiliation(s)
- Qiang Yi
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Gangfeng Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Weijian Zhu
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Jiaqi Wang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Xinting Ouyang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Kuan Yang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Jinghua Zhong
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
5
|
Yuan Z, Jing H, Deng Y, Liu M, Jiang T, Jin X, Lin W, Liu Y, Yin J. P4HB maintains Wnt-dependent stemness in glioblastoma stem cells as a precision therapeutic target and serum marker. Oncogenesis 2024; 13:42. [PMID: 39580454 PMCID: PMC11585657 DOI: 10.1038/s41389-024-00541-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/27/2024] [Accepted: 11/07/2024] [Indexed: 11/25/2024] Open
Abstract
Glioblastoma stem cells (GSCs) are pivotal in the recurrence and drug resistance of glioblastoma multiforme (GBM). However, precision therapeutic and diagnostic markers for GSCs have not been fully established. Here, using bioinformatics and experimental analysis, we identified P4HB, a protein disulfide isomerase, as a serum marker that maintains stemness in GSCs through the Wnt/β-catenin signaling pathway. Transcriptional silencing of P4HB induces apoptosis and diminishes stem cell-like characteristics in GSCs. Treatments with the chemical CCF624 or the China National Medical Products Administration (NMPA)-approved securinine significantly prolonged survival in patient-derived xenograft mouse models, underscoring P4HB's potential as a therapeutic target and presenting an expedited path to clinical application through drug repurposing. Additionally, elevated P4HB levels in patient serum were found to correlate with disease progression, underscoring its utility as a biomarker and its promise for precision medicine.
Collapse
Affiliation(s)
- Zheng Yuan
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Hongbo Jing
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yilin Deng
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Meichen Liu
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Tao Jiang
- Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiong Jin
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Weiwei Lin
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou, 450052, China.
| | - Yang Liu
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China.
- Huaihe Hospital of Henan University, Kaifeng, 475004, China.
| | - Jinlong Yin
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China.
- Huaihe Hospital of Henan University, Kaifeng, 475004, China.
| |
Collapse
|
6
|
Haque M, Shyanti RK, Mishra MK. Targeted therapy approaches for epithelial-mesenchymal transition in triple negative breast cancer. Front Oncol 2024; 14:1431418. [PMID: 39450256 PMCID: PMC11499239 DOI: 10.3389/fonc.2024.1431418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is distinguished by negative expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), making it an aggressive subtype of breast cancer and contributes to 15-20% of the total incidence. TNBC is a diverse disease with various genetic variations and molecular subtypes. The tumor microenvironment involves multiple cells, including immune cells, fibroblast cells, extracellular matrix (ECM), and blood vessels that constantly interact with tumor cells and influence each other. The ECM undergoes significant structural changes, leading to induced cell proliferation, migration, adhesion, invasion, and epithelial-to-mesenchymal transition (EMT). The involvement of EMT in the occurrence and development of tumors through invasion and metastasis in TNBC has been a matter of concern. Therefore, EMT markers could be prognostic predictors and potential therapeutic targets in TNBC. Chemotherapy has been one of the primary options for treating patients with TNBC, but its efficacy against TNBC is still limited. Targeted therapy is a critical emerging option with enhanced efficacy and less adverse effects on patients. Various targeted therapy approaches have been developed based on the specific molecules and the signaling pathways involved in TNBC. These include inhibitors of signaling pathways such as TGF-β, Wnt/β-catenin, Notch, TNF-α/NF-κB and EGFR, as well as immune checkpoint inhibitors, such as pembrolizumab, 2laparib, and talazoparib have been widely explored. This article reviews recent developments in EMT in TNBC invasion and metastasis and potential targeted therapy strategies.
Collapse
Affiliation(s)
| | | | - Manoj K. Mishra
- Cancer Research Center, Department of Biological Sciences, Alabama State
University, Montgomery, AL, United States
| |
Collapse
|
7
|
Anderson AN, Conley P, Klocke CD, Sengupta SK, Pang A, Farley HC, Gillingham AR, Dawson AD, Fan Y, Jones JA, Gibbs SL, Skalet AH, Wu G, Wong MH. Detection of neoplastic-immune hybrid cells with metastatic properties in uveal melanoma. Biomark Res 2024; 12:67. [PMID: 39030653 PMCID: PMC11264923 DOI: 10.1186/s40364-024-00609-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/18/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Uveal melanoma is the most common non-cutaneous melanoma and is an intraocular malignancy affecting nearly 7,000 individuals per year worldwide. Of these, approximately 50% will progress to metastatic disease for which there are currently no effective curative therapies. Despite advances in molecular profiling and metastatic stratification of uveal melanoma tumors, little is known regarding their underlying biology of metastasis. Our group has identified a disseminated neoplastic cell population characterized by co-expression of immune and melanoma proteins, circulating hybrid cells (hybrids), in patients with uveal melanoma. Compared to circulating tumor cells, which lack expression of immune proteins, hybrids are detected at an increased prevalence in peripheral blood and can be used as a non-invasive biomarker to predict metastatic progression. METHODS To ascertain mechanisms underlying enhanced hybrid cell dissemination we identified hybrid cells within primary uveal melanoma tumors using single cell RNA sequencing (n = 8) and evaluated their gene expression and predicted ligand-receptor interactions in relation to other melanoma and immune cells within the primary tumor. We then verified expression of upregulated hybrid pathways within patient-matched tumor and peripheral blood hybrids (n = 4) using cyclic immunofluorescence and quantified their protein expression relative to other non-hybrid tumor and disseminated tumor cells. RESULTS Among the top upregulated genes and pathways in hybrid cells were those involved in enhanced cell motility and cytoskeletal rearrangement, immune evasion, and altered cellular metabolism. In patient-matched tumor and peripheral blood, we verified gene expression by examining concordant protein expression for each pathway category: TMSB10 (cell motility), CD74 (immune evasion) and GPX1 (metabolism). Both TMSB10 and GPX1 were expressed on significantly higher numbers of disseminated hybrid cells compared to circulating tumor cells, and CD74 and GPX1 were expressed on more disseminated hybrids than tumor-resident hybrids. Lastly, we identified that hybrid cells express ligand-receptor signaling pathways implicated in promoting metastasis including GAS6-AXL, CXCL12-CXCR4, LGALS9-P4HB and IGF1-IGFR1. CONCLUSION These findings highlight the importance of TMSB10, GPX1 and CD74 for successful hybrid cell dissemination and survival in circulation. Our results contribute to the understanding of uveal melanoma tumor progression and interactions between tumor cells and immune cells in the tumor microenvironment that may promote metastasis.
Collapse
Affiliation(s)
- Ashley N Anderson
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Patrick Conley
- Department of Medical Informatics and Clinical Epidemiology, OHSU, Portland, OR, USA
| | - Christopher D Klocke
- Department of Medical Informatics and Clinical Epidemiology, OHSU, Portland, OR, USA
| | - Sidharth K Sengupta
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Amara Pang
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Hannah C Farley
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
- Department of Biomedical Engineering, OHSU, Portland, OR, USA
| | - Abigail R Gillingham
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Aubrey D Dawson
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Yichen Fan
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Jocelyn A Jones
- Department of Biomedical Engineering, OHSU, Portland, OR, USA
| | - Summer L Gibbs
- Department of Biomedical Engineering, OHSU, Portland, OR, USA
- Knight Cancer Institute, OHSU, Portland, OR, USA
| | - Alison H Skalet
- Casey Eye Institute, OHSU, Portland, OR, USA
- Knight Cancer Institute, OHSU, Portland, OR, USA
| | - Guanming Wu
- Department of Medical Informatics and Clinical Epidemiology, OHSU, Portland, OR, USA
- Knight Cancer Institute, OHSU, Portland, OR, USA
| | - Melissa H Wong
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University (OHSU), Portland, OR, USA.
- Knight Cancer Institute, OHSU, Portland, OR, USA.
| |
Collapse
|
8
|
Huang R, Wu D, Zhang K, Hu G, Liu Y, Jiang Y, Wang C, Zheng Y. ARID1A loss induces P4HB to activate fibroblasts to support lung cancer cell growth, invasion, and chemoresistance. Cancer Sci 2024; 115:439-451. [PMID: 38100120 PMCID: PMC10859615 DOI: 10.1111/cas.16052] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 02/13/2024] Open
Abstract
Loss of AT-interacting domain-rich protein 1A (ARID1A) frequently occurs in human malignancies including lung cancer. The biological consequence of ARID1A mutation in lung cancer is not fully understood. This study was designed to determine the effect of ARID1A-depleted lung cancer cells on fibroblast activation. Conditioned media was collected from ARID1A-depleted lung cancer cells and employed to treat lung fibroblasts. The proliferation and migration of lung fibroblasts were investigated. The secretory genes were profiled in lung cancer cells upon ARID1A knockdown. Antibody-based neutralization was utilized to confirm their role in mediating the cross-talk between lung cancer cells and fibroblasts. NOD-SCID-IL2RgammaC-null (NSG) mice received tumor tissues from patients with ARID1A-mutated lung cancer to establish patient-derived xenograft (PDX) models. Notably, ARID1A-depleted lung cancer cells promoted the proliferation and migration of lung fibroblasts. Mechanistically, ARID1A depletion augmented the expression and secretion of prolyl 4-hydroxylase beta (P4HB) in lung cancer cells, which induced the activation of lung fibroblasts through the β-catenin signaling pathway. P4HB-activated lung fibroblasts promoted the proliferation, invasion, and chemoresistance in lung cancer cells. Neutralizing P4HB hampered the tumor growth and increased cisplatin cytotoxic efficacy in two PDX models. Serum P4HB levels were higher in ARID1A-mutated lung cancer patients than in healthy controls. Moreover, increased serum levels of P4HB were significantly associated with lung cancer metastasis. Together, our work indicates a pivotal role for P4HB in orchestrating the cross-talk between ARID1A-mutated cancer cells and cancer-associated fibroblasts during lung cancer progression. P4HB may represent a promising target for improving lung cancer treatment.
Collapse
Affiliation(s)
- Risheng Huang
- Department of Thoracic SurgeryThe Dingli Clinical College of Wenzhou Medical University, Wenzhou Central HospitalWenzhouChina
| | - Danni Wu
- Department of Thoracic SurgeryThe Dingli Clinical College of Wenzhou Medical University, Wenzhou Central HospitalWenzhouChina
| | - Kangliang Zhang
- Department of Central LabThe Dingli Clinical College of Wenzhou Medical University, Wenzhou Central HospitalWenzhouChina
| | - Guanqiong Hu
- Department of NursingThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yu Liu
- Department of Thoracic SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yi Jiang
- Department of PathologyThe Dingli Clinical College of Wenzhou Medical University, Wenzhou Central HospitalWenzhouChina
| | - Chichao Wang
- Department of Thoracic SurgeryThe Dingli Clinical College of Wenzhou Medical University, Wenzhou Central HospitalWenzhouChina
| | - Yuanliang Zheng
- Department of Thoracic SurgeryThe Dingli Clinical College of Wenzhou Medical University, Wenzhou Central HospitalWenzhouChina
| |
Collapse
|
9
|
Barzegar S, Pirouzpanah S. Zinc finger proteins and ATP-binding cassette transporter-dependent multidrug resistance. Eur J Clin Invest 2024; 54:e14120. [PMID: 37930002 DOI: 10.1111/eci.14120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/12/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Multidrug resistance (MDR) remains a significant challenge in cancer treatment, leading to poor clinical outcomes. Dysregulation of ATP-binding cassette (ABC) transporters has been identified as a key contributor to MDR. Zinc finger proteins (ZNPs) are key regulators of transcription and have emerged as potential contributors to cancer drug resistance. Bridging the knowledge gap between ZNPs and MDR is essential to understand a source of heterogeneity in cancer treatment. This review sought to elucidate how different ZNPs modulate the transcriptional regulation of ABC genes, contributing to resistance to cancer therapies. METHODS The search was conducted using PubMed, Google Scholar, EMBASE and Web of Science. RESULTS In addition to ABC-blockers, the transcriptional features regulated by ZNP are expected to play a role in reversing ABC-mediated MDR and predicting the efficacy of anticancer treatments. Among the ZNP-induced epithelial to mesenchymal transition, SNAIL, SLUG and Zebs have been identified as important factors in promoting MDR through activation of ATM, NFκB and PI3K/Akt pathways, exposing the metabolism to potential ZNP-MDR interactions. Additionally, nuclear receptors, such as VDR, ER and PXR have been found to modulate certain ABC regulations. Other C2H2-type zinc fingers, including Kruppel-like factors, Gli and Sp also have the potential to contribute to MDR. CONCLUSION Besides reviewing evidence on the effects of ZNP dysregulation on ABC-related chemoresistance in malignancies, significant markers of ZNP functions are discussed to highlight the clinical implications of gene-to-gene and microenvironment-to-gene interactions on MDR prospects. Future research on ZNP-derived biomarkers is crucial for addressing heterogeneity in cancer therapy.
Collapse
Affiliation(s)
- Sanaz Barzegar
- Shahid Madani Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Pirouzpanah
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
10
|
Feng D, Tuo Z, Wang J, Ye L, Li D, Wu R, Wei W, Yang Y, Zhang C. Establishment of novel ferroptosis-related prognostic subtypes correlating with immune dysfunction in prostate cancer patients. Heliyon 2024; 10:e23495. [PMID: 38187257 PMCID: PMC10770465 DOI: 10.1016/j.heliyon.2023.e23495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/19/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Background We aimed to identify two new prognostic subtypes and create a predictive index for prostate cancer (PCa) patients based on ferroptosis database. Methods The nonnegative matrix factorization approach was used to identify molecular subtypes. We investigate the differences between cluster 1 and cluster 2 in terms of clinical features, functional pathways, tumour stemness, tumour heterogeneity, gene mutation and tumour immune microenvironment score after identifying the two molecular subtypes. Colony formation assay and flow cytometry assay were performed. Results The stratification of two clusters was closely connected to BCR-free survival using the nonnegative matrix factorization method, which was validated in the other three datasets. Furthermore, multivariate Cox regression analysis revealed that this classification was an independent risk factor for patients with PCa. Ribosome, aminoacyl tRNA production, oxidative phosphorylation, and Parkinson's disease-related pathways were shown to be highly enriched in cluster 1. In comparison to cluster 2, patients in cluster 1 exhibited significantly reduced CD4+ T cells, CD8+ T cells, neutrophils, dendritic cells and tumor immune microenvironment scores. Only HHLA2 was more abundant in cluster 1. Moreover, we found that P4HB downregulation could significantly inhibit the colony formation ability and contributed to cell apoptosis of C4-2B and DU145 cell lines. Conclusions We discovered two new prognostic subtypes associated with immunological dysfunction in PCa patients based on ferroptosis-related genes and found that P4HB downregulation could significantly inhibit the colony formation ability and contributed to cell apoptosis of PCa cell lines.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yubo Yang
- Department of Urology, Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, 404000, China
| | - Chi Zhang
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
11
|
Anderson AN, Conley P, Klocke CD, Sengupta SK, Pang A, Farley HC, Gillingham AR, Dawson AD, Fan Y, Jones JA, Gibbs SL, Skalet AH, Wu G, Wong MH. Detection of neoplastic-immune hybrid cells with metastatic properties in uveal melanoma. RESEARCH SQUARE 2023:rs.3.rs-3694879. [PMID: 38106024 PMCID: PMC10723549 DOI: 10.21203/rs.3.rs-3694879/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Background Uveal melanoma is the most common non-cutaneous melanoma and is an intraocular malignancy affecting nearly 7,000 individuals per year worldwide. Of these, approximately 50% will progress to metastatic disease for which there are currently no effective therapies. Despite advances in molecular profiling and metastatic stratification of uveal melanoma tumors, little is known regarding their underlying biology of metastasis. Our group has identified a disseminated neoplastic cell population characterized by co-expression of immune and melanoma proteins, circulating hybrid cells (hybrids), in patients with uveal melanoma. Compared to circulating tumor cells, which lack expression of immune proteins, hybrids are detected at an increased prevalence in peripheral blood and can be used as a non-invasive biomarker to predict metastatic progression. Methods To ascertain mechanisms underlying enhanced hybrid cell dissemination we identified hybrid cells within primary uveal melanoma tumors using single cell RNA sequencing and evaluated their gene expression and predicted ligand-receptor interactions in relation to other melanoma and immune cells within the primary tumor. We then verified expression of upregulated hybrid pathways within patient-matched tumor and peripheral blood hybrids using cyclic immunofluorescence and quantified their protein expression relative to other non-hybrid tumor and disseminated tumor cells. Results Among the top upregulated genes and pathways in hybrid cells were those involved in enhanced cell motility and cytoskeletal rearrangement, immune evasion, and altered cellular metabolism. In patient-matched tumor and peripheral blood, we verified gene expression by examining concordant protein expression for each pathway category: TMSB10 (cell motility), CD74 (immune evasion) and GPX1 (metabolism). Both TMSB10 and GPX1 were expressed on significantly higher numbers of disseminated hybrid cells compared to circulating tumor cells, and CD74 and GPX1 were expressed on more disseminated hybrids than tumor-resident hybrids. Lastly, we identified that hybrid cells express ligand-receptor signaling pathways implicated in promoting metastasis including GAS6-AXL, CXCL12-CXCR4, LGALS9-P4HB and IGF1-IGFR1. Conclusion These findings highlight the importance of TMSB10, GPX1 and CD74 for successful hybrid cell dissemination and survival in circulation. Our results contribute to the understanding of uveal melanoma tumor progression and interactions between tumor cells and immune cells in the tumor microenvironment that may promote metastasis.
Collapse
|
12
|
Jing F, Li X, Jiang H, Sun J, Guo Q. Combating drug resistance in hepatocellular carcinoma: No awareness today, no action tomorrow. Biomed Pharmacother 2023; 167:115561. [PMID: 37757493 DOI: 10.1016/j.biopha.2023.115561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the sixth most common cancer worldwide, is associated with a high degree of malignancy and poor prognosis. Patients with early HCC may benefit from surgical resection to remove tumor tissue and a margin of healthy tissue surrounding it. Unfortunately, most patients with HCC are diagnosed at an advanced or distant stage, at which point resection is not feasible. Systemic therapy is now routinely prescribed to patients with advanced HCC; however, drug resistance has become a major obstacle to the treatment of HCC and exploring purported mechanisms promoting drug resistance remains a challenge. Here, we focus on the determinants of drug resistance from the perspective of non-coding RNAs (ncRNAs), liver cancer stem cells (LCSCs), autophagy, epithelial-mesenchymal transition (EMT), exosomes, ferroptosis, and the tumor microenvironment (TME), with the aim to provide new insights into HCC treatment.
Collapse
Affiliation(s)
- Fanbo Jing
- The department of clinical pharmacy. The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao Li
- The department of clinical pharmacy. The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Jiang
- Qingdao Haici Hospital, Qingdao 266000, China
| | - Jialin Sun
- The department of clinical pharmacy. The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qie Guo
- The department of clinical pharmacy. The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
13
|
Anderson AN, Conley P, Klocke CD, Sengupta SK, Robinson TL, Fan Y, Jones JA, Gibbs SL, Skalet AH, Wu G, Wong MH. Analysis of uveal melanoma scRNA sequencing data identifies neoplastic-immune hybrid cells that exhibit metastatic potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563815. [PMID: 37961378 PMCID: PMC10634980 DOI: 10.1101/2023.10.24.563815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Uveal melanoma (UM) is the most common non-cutaneous melanoma and is an intraocular malignancy that affects nearly 7,000 individuals per year worldwide. Of these, nearly 50% will progress to metastatic disease for which there are currently no effective therapies. Despite advances in the molecular profiling and metastatic stratification of class 1 and 2 UM tumors, little is known regarding the underlying biology of UM metastasis. Our group has identified a disseminated tumor cell population characterized by co-expression of immune and melanoma proteins, (circulating hybrid cells (CHCs), in patients with UM. Compared to circulating tumor cells, CHCs are detected at an increased prevalence in peripheral blood and can be used as a non-invasive biomarker to predict metastatic progression. To identify mechanisms underlying enhanced hybrid cell dissemination we sought to identify hybrid cells within a primary UM single cell RNA-seq dataset. Using rigorous doublet discrimination approaches, we identified UM hybrids and evaluated their gene expression, predicted ligand-receptor status, and cell-cell communication state in relation to other melanoma and immune cells within the primary tumor. We identified several genes and pathways upregulated in hybrid cells, including those involved in enhancing cell motility and cytoskeleton rearrangement, evading immune detection, and altering cellular metabolism. In addition, we identified that hybrid cells express ligand-receptor signaling pathways implicated in promoting cancer metastasis including IGF1-IGFR1, GAS6-AXL, LGALS9-P4HB, APP-CD74 and CXCL12-CXCR4. These results contribute to our understanding of tumor progression and interactions between tumor cells and immune cells in the UM microenvironment that may promote metastasis.
Collapse
|
14
|
Singh P, Yadav R, Verma M, Chhabra R. Analysis of the Inhibitory Effect of hsa-miR-145-5p and hsa-miR-203a-5p on Imatinib-Resistant K562 Cells by GC/MS Metabolomics Method. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2117-2126. [PMID: 37706267 DOI: 10.1021/jasms.3c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Imatinib (IM) resistance is considered to be a significant challenge in the management of chronic myeloid leukemia (CML). Previous studies have reported that hsa-miR-145-5p and hsa-miR-203a-5p can overcome IM resistance and hsa-miR-203a-5p can alter glutathione metabolism in IM-resistant cells. The purpose of this study was to examine whether hsa-miR-145-5p or hsa-miR-203a-5p counters IM resistance by targeting the overall metabolic profile of IM-resistant K562 cells. The metablic profiling of cell lysates obtained from IM-sensitive, IM-resistant, and miR-transfected IM-resistant K562 cells was carried out using the GC-MS technique. Overall, 75 major metabolites were detected, of which 32 were present in all samples. The pathway analysis of MetaboAnalyst 5.0 revealed that the majorly enriched pathways included glucose metabolism, fatty acid biosynthesis, lipogenesis, and nucleotide metabolism. Eleven of identified metabolites, l-glutamine, l-glutamic acid, l-lactic acid, phosphoric acid, 9,12-octadecadienoic acid, 9-octadecenoic acid, myristic acid, palmitic acid, cholesterol, and β-alanine, appeared in enriched pathways. IM-resistant cells had comparatively higher concentrations of all of these metabolites. Notably, the introduction of hsa-miR-145-5p or hsa-miR-203a-5p into resistant cells resulted in a decrease in levels of these metabolites. The efficacy of miR-203a-5p was particularly remarkable in comparison with miR-145-5p, as evidenced by partial least-squares-discriminant analysis (PLS-DA), which showed a high level of similarity in metabolic profile between IM-sensitive K562 cells and IM-resistant cells transfected with hsa-miR-203a-5p. The results indicate that GC-MS-based metabolic profiling has the potential to distinguish between drug-resistant and -sensitive cells. This approach can also be used to routinely monitor therapeutic response in drug-resistant patients, thus, enabling personalized therapy.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Radheshyam Yadav
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Malkhey Verma
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Ravindresh Chhabra
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda 151401, India
| |
Collapse
|
15
|
Xiong S, Li S, Zeng J, Nie J, Liu T, Liu X, Chen L, Fu B, Deng J, Xu S. Deciphering the immunological and prognostic features of bladder cancer through platinum-resistance-related genes analysis and identifying potential therapeutic target P4HB. Front Immunol 2023; 14:1253586. [PMID: 37790935 PMCID: PMC10544894 DOI: 10.3389/fimmu.2023.1253586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/01/2023] [Indexed: 10/05/2023] Open
Abstract
Objectives To identify the molecular subtypes and develop a scoring system for the tumor immune microenvironment (TIME) and prognostic features of bladder cancer (BLCA) based on the platinum-resistance-related (PRR) genes analysis while identifying P4HB as a potential therapeutic target. Methods In this study, we analyzed gene expression data and clinical information of 594 BLCA samples. We used unsupervised clustering to identify molecular subtypes based on the expression levels of PRR genes. Functional and pathway enrichment analyses were performed to understand the biological activities of these subtypes. We also assessed the TIME and developed a prognostic signature and scoring system. Moreover, we analyzed the efficacy of immune checkpoint inhibitors. Then we conducted real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) experiments to detect the expression level of prolyl 4-hydroxylase subunit beta (P4HB) in BLCA cell lines. Transfection of small interference ribonucleic acid (siRNA) was performed in 5637 and EJ cells to knock down P4HB, and the impact of P4HB on cellular functions was evaluated through wound-healing and transwell assays. Finally, siRNA transfection of P4HB was performed in the cisplatin-resistant T24 cell to assess its impact on the sensitivity of BLCA to platinum-based chemotherapy drugs. Results In a cohort of 594 BLCA samples (TCGA-BLCA, n=406; GSE13507, n=188), 846 PRR-associated genes were identified by intersecting BLCA expression data from TCGA and GEO databases with the PRR genes from the HGSOC-Platinum database. Univariate Cox regression analysis revealed 264 PRR genes linked to BLCA prognosis. We identified three molecular subtypes (Cluster A-C) and the PRR scoring system based on PRR genes. Cluster C exhibited a better prognosis and lower immune cell infiltration compared to the other Clusters A and B. The high PRR score group was significantly associated with an immunosuppressive tumor microenvironment, poor clinical-pathological features, and a poor prognosis. Furthermore, the high PRR group showed higher expression of immune checkpoint molecules and a poorer response to immune checkpoint inhibitors than the low PRR group. The key PRR gene P4HB was highly expressed in BLCA cell lines, and cellular functional experiments in vitro indicate that P4HB may be an important factor influencing BLCA migration and invasion. Conclusion Our study demonstrates that the PRR signatures are significantly associated with clinical-pathological features, the TIME, and prognostic features. The key PRR gene, P4HB, s a biomarker for the individualized treatment of BLCA patients.
Collapse
Affiliation(s)
- Situ Xiong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Sheng Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Jin Zeng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Jianqiang Nie
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Taobin Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Xiaoqiang Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Luyao Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| | - Jun Deng
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Songhui Xu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Institute of Urology, Nanchang, China
| |
Collapse
|
16
|
Neutrophil Transcriptional Deregulation by the Periodontal Pathogen Fusobacterium nucleatum in Gastric Cancer: A Bioinformatic Study. DISEASE MARKERS 2022; 2022:9584507. [PMID: 36033825 PMCID: PMC9410804 DOI: 10.1155/2022/9584507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/27/2022]
Abstract
Background Infection with the periodontal pathogen Fusobacterium nucleatum (F. nucleatum) has been associated with gastric cancer. The present study is aimed at uncovering the putative biological mechanisms underlying effects of F. nucleatum–mediated neutrophil transcriptional deregulation in gastric cancer. Materials and Methods A gene expression dataset pertaining to F. nucleatum-infected human neutrophils was utilized to identify differentially expressed genes (DEGs) using the GEO2R tool. Candidate genes associated with gastric cancer were sourced from the “Candidate Cancer Gene Database” (CCGD). Overlapping genes among these were identified as link genes. Functional profiling of the link genes was performed using “g:Profiler” tool to identify enriched Gene Ontology (GO) terms, pathways, miRNAs, transcription factors, and human phenotype ontology terms. Protein-protein interaction (PPI) network was constructed for the link genes using the “STRING” tool, hub nodes were identified as key candidate genes, and functionally enriched terms were determined. Results The gene expression dataset GEO20151 was downloaded, and 589 DEGs were identified through differential analysis. 886 candidate gastric cancer genes were identified in the CGGD database. Among these, 36 overlapping genes were identified as the link genes. Enriched GO terms included molecular function “enzyme building,” biological process “protein folding,'” cellular components related to membrane-bound organelles, transcription factors ER71 and Sp1, miRNAs miR580 and miR155, and several human phenotype ontology terms including squamous epithelium of esophagus. The PPI network contained 36 nodes and 53 edges, where the top nodes included PH4 and CANX, and functional terms related to intracellular membrane trafficking were enriched. Conclusion F nucleatum-induced neutrophil transcriptional activation may be implicated in gastric cancer via several candidate genes including DNAJB1, EHD1, IER2, CANX, and PH4B. Functional analysis revealed membrane-bound organelle dysfunction, intracellular trafficking, transcription factors ER71 and Sp1, and miRNAs miR580 and miR155 as other candidate mechanisms, which should be investigated in experimental studies.
Collapse
|
17
|
Gu L, Chen Y, Li X, Mei Y, Zhou J, Ma J, Zhang M, Hou T, He D, Zeng J. Integrated Analysis and Identification of Critical RNA-Binding Proteins in Bladder Cancer. Cancers (Basel) 2022; 14:3739. [PMID: 35954405 PMCID: PMC9367304 DOI: 10.3390/cancers14153739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
RBPs in the development and progression of BC remains unclear. Here, we elucidated the role of RBPs in predicting the survival of patients with BC. Clinical information and RNA sequencing data of the training and validation cohorts were downloaded from the Cancer Genome Atlas and Gene Expression Omnibus databases, respectively. Survival-related differentially expressed RBPs were identified using Cox regression analyses. A total of 113 upregulated and 54 downregulated RBPs were observed, with six showing prognostic values (AHNAK, MAP1B, LAMA2, P4HB, FASN, and GSDMB). In both the GSE32548 and GSE31684 datasets, patients with low-risk scores in survival-related six RBPs-based prognostic model showed longer overall survival than those with high-risk scores. AHNAK, MAP1B, P4HB, and FASN expression were significantly upregulated in both BC tissues and cell lines. BC tissues from high-risk group showed higher proportions of naive CD4+ T cells, M0 and M2 macrophages, and neutrophils and lower proportions of plasma cells, CD8+ T cells, and T-cell follicular helper compared to low-risk group. AHNAK knockdown significantly inhibited the proliferation, invasion, and migration of BC cells in vitro and inhibited the growth of subcutaneous tumors in vivo. We thus developed and functionally validated a novel six RBPs-based prognostic model for BC.
Collapse
Affiliation(s)
- Lijiang Gu
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (L.G.); (Y.C.); (X.L.); (Y.M.); (J.Z.); (J.M.); (M.Z.); (T.H.)
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an 710061, China
| | - Yuhang Chen
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (L.G.); (Y.C.); (X.L.); (Y.M.); (J.Z.); (J.M.); (M.Z.); (T.H.)
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an 710061, China
| | - Xing Li
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (L.G.); (Y.C.); (X.L.); (Y.M.); (J.Z.); (J.M.); (M.Z.); (T.H.)
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an 710061, China
| | - Yibo Mei
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (L.G.); (Y.C.); (X.L.); (Y.M.); (J.Z.); (J.M.); (M.Z.); (T.H.)
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an 710061, China
| | - Jinlai Zhou
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (L.G.); (Y.C.); (X.L.); (Y.M.); (J.Z.); (J.M.); (M.Z.); (T.H.)
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an 710061, China
| | - Jianbin Ma
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (L.G.); (Y.C.); (X.L.); (Y.M.); (J.Z.); (J.M.); (M.Z.); (T.H.)
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an 710061, China
| | - Mengzhao Zhang
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (L.G.); (Y.C.); (X.L.); (Y.M.); (J.Z.); (J.M.); (M.Z.); (T.H.)
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an 710061, China
| | - Tao Hou
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (L.G.); (Y.C.); (X.L.); (Y.M.); (J.Z.); (J.M.); (M.Z.); (T.H.)
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an 710061, China
| | - Dalin He
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (L.G.); (Y.C.); (X.L.); (Y.M.); (J.Z.); (J.M.); (M.Z.); (T.H.)
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an 710061, China
| | - Jin Zeng
- Department of Urology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (L.G.); (Y.C.); (X.L.); (Y.M.); (J.Z.); (J.M.); (M.Z.); (T.H.)
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an 710061, China
| |
Collapse
|
18
|
Suppressive Effects of Siegesbeckia orientalis Ethanolic Extract on Proliferation and Migration of Hepatocellular Carcinoma Cells through Promoting Oxidative Stress, Apoptosis and Inflammatory Responses. Pharmaceuticals (Basel) 2022; 15:ph15070826. [PMID: 35890125 PMCID: PMC9351687 DOI: 10.3390/ph15070826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 12/24/2022] Open
Abstract
Previous studies have demonstrated that Siegesbeckia orientalis (SO) has a suppressive effect on the growth and migration of endometrial and cervical cancer cells. The present study examined the effect of SO ethanolic extract (SOE) on the proliferation and migration of hepatocellular carcinoma (HCC) and examined the effects of SOE on non-cancerous cells using HaCaT keratinocytes as a model. The SOE effectively inhibited the proliferation of Hepa1-6 (IC50 = 282.4 μg/mL) and HepG2 (IC50 = 344.3 μg/mL) hepatoma cells, whereas it has less cytotoxic effect on HaCaT cells (IC50 = 892.4 μg/mL). The SOE treatment increased the generation of ROS in HCC, but decreased the expression of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase and catalase. In contrast, it reduced intracellular ROS formation and upregulated the expression of the related antioxidant enzymes in the H2O2-stimulated HaCaT cells. The SOE intervention also down-regulated the anti-apoptotic Bcl-2 and the migration-related proteins including matrix metalloproteinases (MMPs) and β-catenin in the HCC, suggesting that SOE could promote HCC apoptosis and inhibit HCC migration. On the contrary, it reduced apoptosis and promoted the migration of the keratinocytes. Additionally, the SOE treatment significantly up-regulated the pro-inflammatory cytokines, including TNF-α, IL-6 and IL-1β, in Hepa1-6 and HepG2 cells. Conversely, it significantly decreased the expression of these cytokines in the H2O2-induced HaCaT cells. These findings indicated that SOE treatment can delay the progression of HCC by increasing oxidative stress, promoting inflammatory response, inducing cancer cell apoptosis and inhibiting their migration. It also has protective effects from pro-oxidant H2O2 in non-cancerous cells. Therefore, SOE may provide a potential treatment for liver cancer.
Collapse
|
19
|
Yin X, Wu Q, Hao Z, Chen L. Identification of novel prognostic targets in glioblastoma using bioinformatics analysis. Biomed Eng Online 2022; 21:26. [PMID: 35436915 PMCID: PMC9014588 DOI: 10.1186/s12938-022-00995-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Background Glioblastoma (GBM) is the most malignant grade of glioma. Highly aggressive characteristics of GBM and poor prognosis cause GBM-related deaths. The potential prognostic biomarkers remain to be demonstrated. This research builds up predictive gene targets of expression alterations in GBM utilizing bioinformatics analysis. Methods and results The microarray datasets (GSE15824 and GSE16011) associated with GBM were obtained from Gene Expression Omnibus (GEO) database to identify the differentially expressed genes (DEGs) between GBM and non-tumor tissues. In total, 719 DEGs were obtained and subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) for function enrichment analysis. Furthermore, we constructed protein–protein Interaction (PPI) network among DEGs utilizing Search Tool for the Retrieval of Interacting Genes (STRING) online tool and Cytoscape software. The DEGs of degree > 10 was selected as hub genes, including 73 upregulated genes and 21 downregulated genes. Moreover, MCODE application in Cytoscape software was employed to identify three key modules involved in GBM development and prognosis. Additionally, we used the Gene expression profiling and interactive analyses (GEPIA) online tool to further confirm four genes involving in poor prognosis of GBM patients, including interferon-gamma-inducible protein 30 (IFI30), major histocompatibility complex class II-DM alpha (HLA-DMA), Prolyl 4-hydroxylase beta polypeptide (P4HB) and reticulocalbin-1 (RCN1). Furthermore, the correlation analysis indicated that the expression of IFI30, an acknowledged biomarker in glioma, was positively correlated with HLA-DMA, P4HB and RCN1. RCN1 expression was positively correlated with P4HB and HLA-DMA. Moreover, qRT-PCR and immunohistochemistry analysis further validated the upregulation of four prognostic markers in GBM tissues. Conclusions Analysis of multiple datasets combined with global network information and experimental verification presents a successful approach to uncover the risk hub genes and prognostic markers of GBM. Our study identified four risk- and prognostic-related gene signatures, including IFI30, HLA-DMA, P4HB and RCN1. This gene sets contribute a new perspective to improve the diagnostic, prognostic, and therapeutic outcomes of GBM.
Collapse
Affiliation(s)
- Xiaofeng Yin
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, No.382 Wuyi Road, Taiyuan, 030000, Shanxi, China
| | - Quansheng Wu
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, No.382 Wuyi Road, Taiyuan, 030000, Shanxi, China
| | - Zheng Hao
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, No.382 Wuyi Road, Taiyuan, 030000, Shanxi, China
| | - Laizhao Chen
- Department of Neurosurgery, Second Hospital of Shanxi Medical University, No.382 Wuyi Road, Taiyuan, 030000, Shanxi, China.
| |
Collapse
|
20
|
Bakker EY, Fujii M, Krstic-Demonacos M, Demonacos C, Alhammad R. Protein disulfide isomerase A1‑associated pathways in the development of stratified breast cancer therapies. Int J Oncol 2022; 60:16. [PMID: 35014681 PMCID: PMC8776328 DOI: 10.3892/ijo.2022.5306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/07/2021] [Indexed: 11/18/2022] Open
Abstract
The oxidoreductase protein disulfide isomerase A1 (PDIA1) functions as a cofactor for many transcription factors including estrogen receptor α (ERα), nuclear factor (NF)-κB, nuclear factor erythroid 2-like 2 (NRF2) and regulates the protein stability of the tumor suppressor p53. Taking this into account we hypothesized that PDIA1, by differentially modulating the gene expression of a diverse subset of genes in the ERα-positive vs. the ERα-negative breast cancer cells, might modify dissimilar pathways in the two types of breast cancer. This hypothesis was investigated using RNA-seq data from PDIA1-silenced MCF-7 (ERα-positive) and MDA-MB-231 (ERα-negative) breast cancer cells treated with either interferon γ (IFN-γ) or etoposide (ETO), and the obtained data were further analyzed using a variety of bioinformatic tools alongside clinical relevance assessment via Kaplan-Meier patient survival curves. The results highlighted the dual role of PDIA1 in suppressing carcinogenesis in the ERα(+) breast cancer patients by negatively regulating the response to reactive oxygen species (ROS) and promoting carcinogenesis by inducing cell cycle progression. In the ERα(−) breast cancer patients, PDIA1 prevented tumor development by modulating NF-κB and p53 activity and cell migration and induced breast cancer progression through control of cytokine signaling and the immune response. The findings reported in this study shed light on the differential pathways regulating carcinogenesis in ERα(+) and ERα(−) breast cancer patients and could help identify therapeutic targets selectively effective in ERα(+) vs. ERα(−) patients.
Collapse
Affiliation(s)
- Emyr Yosef Bakker
- School of Medicine, University of Central Lancashire, Preston, Lancashire PR1 2HE, UK
| | - Masayuki Fujii
- Department of Biological and Environmental Chemistry, Faculty of Humanity Oriented Science and Engineering, Kindai University, Iizuka, Fukuoka 820‑8555, Japan
| | | | - Constantinos Demonacos
- Faculty of Biology Medicine and Health, School of Health Science, Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PT, UK
| | - Rashed Alhammad
- Faculty of Biology Medicine and Health, School of Health Science, Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
21
|
Abd Allah M, Soliman A. Evaluation of prolyl-4-hydroxylase subunit beta and special AT-rich region-binding protein-1 immunoexpression in bladder transitional-cell carcinoma. EGYPTIAN JOURNAL OF PATHOLOGY 2022; 42:28. [DOI: 10.4103/egjp.egjp_7_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
22
|
Gwark S, Ahn HS, Yeom J, Yu J, Oh Y, Jeong JH, Ahn JH, Jung KH, Kim SB, Lee HJ, Gong G, Lee SB, Chung IY, Kim HJ, Ko BS, Lee JW, Son BH, Ahn SH, Kim K, Kim J. Plasma Proteome Signature to Predict the Outcome of Breast Cancer Patients Receiving Neoadjuvant Chemotherapy. Cancers (Basel) 2021; 13:6267. [PMID: 34944885 PMCID: PMC8699627 DOI: 10.3390/cancers13246267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/31/2022] Open
Abstract
The plasma proteome of 51 non-metastatic breast cancer patients receiving neoadjuvant chemotherapy (NCT) was prospectively analyzed by high-resolution mass spectrometry coupled with nano-flow liquid chromatography using blood drawn at the time of diagnosis. Plasma proteins were identified as potential biomarkers, and their correlation with clinicopathological variables and survival outcomes was analyzed. Of 51 patients, 20 (39.2%) were HR+/HER2-, five (9.8%) were HR+/HER2+, five (9.8%) were HER2+, and 21 (41.2%) were triple-negative subtype. During a median follow-up of 52.0 months, there were 15 relapses (29.4%) and eight deaths (15.7%). Four potential biomarkers were identified among differentially expressed proteins: APOC3 had higher plasma concentrations in the pathological complete response (pCR) group, whereas MBL2, ENG, and P4HB were higher in the non-pCR group. Proteins statistically significantly associated with survival and capable of differentiating low- and high-risk groups were MBL2 and P4HB for disease-free survival, P4HB for overall survival, and MBL2 for distant metastasis-free survival (DMFS). In the multivariate analysis, only MBL2 was a consistent risk factor for DMFS (HR: 9.65, 95% CI 2.10-44.31). The results demonstrate that the proteomes from non-invasive sampling correlate with pCR and survival in breast cancer patients receiving NCT. Further investigation may clarify the role of these proteins in predicting prognosis and thus their therapeutic potential for the prevention of recurrence.
Collapse
Affiliation(s)
- Sungchan Gwark
- Department of Surgery, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul 07985, Korea;
| | - Hee-Sung Ahn
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (H.-S.A.); (J.Y.); (Y.O.)
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea;
| | - Jeonghun Yeom
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea;
| | - Jiyoung Yu
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (H.-S.A.); (J.Y.); (Y.O.)
| | - Yumi Oh
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (H.-S.A.); (J.Y.); (Y.O.)
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jae Ho Jeong
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.H.J.); (J.-H.A.); (K.H.J.); (S.-B.K.)
| | - Jin-Hee Ahn
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.H.J.); (J.-H.A.); (K.H.J.); (S.-B.K.)
| | - Kyung Hae Jung
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.H.J.); (J.-H.A.); (K.H.J.); (S.-B.K.)
| | - Sung-Bae Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.H.J.); (J.-H.A.); (K.H.J.); (S.-B.K.)
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (H.J.L.); (G.G.)
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (H.J.L.); (G.G.)
| | - Sae Byul Lee
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (S.B.L.); (I.Y.C.); (H.J.K.); (B.S.K.); (J.W.L.); (B.H.S.); (S.H.A.)
| | - Il Yong Chung
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (S.B.L.); (I.Y.C.); (H.J.K.); (B.S.K.); (J.W.L.); (B.H.S.); (S.H.A.)
| | - Hee Jeong Kim
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (S.B.L.); (I.Y.C.); (H.J.K.); (B.S.K.); (J.W.L.); (B.H.S.); (S.H.A.)
| | - Beom Seok Ko
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (S.B.L.); (I.Y.C.); (H.J.K.); (B.S.K.); (J.W.L.); (B.H.S.); (S.H.A.)
| | - Jong Won Lee
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (S.B.L.); (I.Y.C.); (H.J.K.); (B.S.K.); (J.W.L.); (B.H.S.); (S.H.A.)
| | - Byung Ho Son
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (S.B.L.); (I.Y.C.); (H.J.K.); (B.S.K.); (J.W.L.); (B.H.S.); (S.H.A.)
| | - Sei Hyun Ahn
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (S.B.L.); (I.Y.C.); (H.J.K.); (B.S.K.); (J.W.L.); (B.H.S.); (S.H.A.)
| | - Kyunggon Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (H.-S.A.); (J.Y.); (Y.O.)
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea;
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea
- Clinical Proteomics Core Laboratory, Convergence Medicine Research Center, Asan Medical Center, Seoul 05505, Korea
- Bio-Medical Institute of Technology, Asan Medical Center, Seoul 05505, Korea
| | - Jisun Kim
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (S.B.L.); (I.Y.C.); (H.J.K.); (B.S.K.); (J.W.L.); (B.H.S.); (S.H.A.)
| |
Collapse
|
23
|
Ju G, Xu C, Zeng K, Zhou T, Zang L. High expression of transmembrane P24 trafficking protein 9 predicts poor prognosis in breast carcinoma. Bioengineered 2021; 12:8965-8979. [PMID: 34635011 PMCID: PMC8806988 DOI: 10.1080/21655979.2021.1990673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Over the years, molecular subtypes based on estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER-2) status have been observed to effectively guide decision-making for the optimal treatment of patients with breast carcinoma (BRCA). However, despite this progress, there are still more than 41,000 BRCA-related fatalities each year in the United States. Moreover, effective drug targets for triple-negative breast carcinoma (TNBC) are still lacking. Given its high mortality rate, it is necessary to investigate more biomarkers with prognostic and pathological relevance in BRCA. In our study, we examined the expression patterns and prognostic implications of transmembrane P24 trafficking protein 9 (TMED9) in BRCA using multiple public cohorts and BRCA specimens collected from Shanghai General Hospital. In addition to this, in vitro experiments were also performed to evaluate the effects of TMED9 expression in BRCA cell proliferation and migration. Our results have demonstrated that a high expression of TMED9 promoted BRCA cell proliferation and migration and predicted poor prognosis in patients with BRCA. In conclusion, TMED9 is a potential prognostic indicator and a possible drug target of BRCA.
Collapse
Affiliation(s)
- Gaoda Ju
- Department of Medical Oncology, Key Laboratory of Carcinogenesis & Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Cheng Xu
- Department of Pathology Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kai Zeng
- Department of Thyroid Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Tianhao Zhou
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, China
| | - Lijuan Zang
- Department of Pathology Center, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Geng P, Qin W, Xu G. Proline metabolism in cancer. Amino Acids 2021; 53:1769-1777. [PMID: 34390414 DOI: 10.1007/s00726-021-03060-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/01/2021] [Indexed: 01/01/2023]
Abstract
Cancer cells often change their metabolism to support uncontrolled proliferation. Proline is the only proteogenic secondary amino acid that is abundant in the body. Recent studies have shown that proline metabolism plays an important role in metabolic reprogramming and affects the occurrence and development of cancer. Proline metabolism is related to ATP production, protein and nucleotide synthesis, and redox homeostasis in tumor cells. Proline can be synthesized by aldehyde dehydrogenase family 18 member A1 (ALDH18A1) and delta1-pyrroline-5-carboxylate reductase (PYCR), up-regulating ALDH18A1 and PYCR can promote the proliferation and invasion of cancer cells. As the main storage of proline, collagen can influence cancer cells proliferation, invasion, and metastasis. Its synthesis depends on the hydroxylation of proline catalyzed by prolyl 4-hydroxylases (P4Hs), which will affect the plasticity and metastasis of cancer cells. The degradation of proline occurs in the mitochondria and involves an oxidation step catalyzed by proline dehydrogenase/proline oxidase (PRODH/POX). Proline catabolism has a dual role in cancer, linking apoptosis with the survival and metastasis of cancer cells. In addition, it has been demonstrated that the regulation of proline metabolic enzymes at the genetic and post-translational levels is related to cancer. This article reviews the role of proline metabolic enzymes in cancer proliferation, apoptosis, metastasis, and development. Research on proline metabolism may provide a new strategy for cancer treatment.
Collapse
Affiliation(s)
- Pengyu Geng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wangshu Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
25
|
Yang W, Wu X, Zhou F. Collagen Type X Alpha 1 (COL10A1) Contributes to Cell Proliferation, Migration, and Invasion by Targeting Prolyl 4-Hydroxylase Beta Polypeptide (P4HB) in Breast Cancer. Med Sci Monit 2021; 27:e928919. [PMID: 33637669 PMCID: PMC7927362 DOI: 10.12659/msm.928919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background Breast cancer, a common malignant tumor, has been considered as the leading cause of cancer-related death in women. Collagen type X alpha 1 (COL10A1) is overexpressed in breast cancer. The current study was designed to determine the functional involvement and regulatory mechanism of COL10A1 on the growth and metastasis of breast cancer. Material/Methods COL10A1 and Prolyl 4-hydroxylase beta polypeptide (P4HB) expressions in normal tissues and tumor tissues of breast cancer patients were obtained from the GEPIA dataset. COL10A1 and P4HB levels in breast cancer cell lines were detected by real-time quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. Furthermore, the interaction between COL10A1 and P4HB was confirmed by co-immunoprecipitation (Co-IP) assay. Cell Counting Kit-8 (CCK-8) and colony formation assay were applied to evaluate cell proliferation and clone-forming abilities of breast cancer cells. In addition, wound healing assay and transwell assay were performed to measure cell migration and invasion capabilities, respectively, in breast cancer. Results The GEPIA dataset presented overexpressed COL10A1 and P4HB in tumor tissues of breast cancer patients. COL10A1 and P4HB expression levels were greatly upregulated in breast cancer cell lines. In addition, COL10A1 could directly interact with P4HB. Functionally, overexpressed COL10A1 boosted the proliferation and metastasis of breast cancer cells and silenced COL10A1 impeded the progression of breast cancer. More importantly, knockdown of P4HB weakened the promoting effects of overexpressed COL10A1 on cell proliferation, migration, and invasion in breast cancer. Conclusions COL10A1 promotes the malignant progression of breast cancer by upregulating P4HB expression, indicating that COL10A1 functions as an oncogene in breast cancer.
Collapse
Affiliation(s)
- Weibin Yang
- Department of Laboratory Medicine, WuHan PuRen Hospital, Wuhan, Hubei, China (mainland)
| | - Xuan Wu
- Department of Laboratory Medicine, WuHan PuRen Hospital, Wuhan, Hubei, China (mainland)
| | - Fan Zhou
- Department of Laboratory Medicine, WuHan PuRen Hospital, Wuhan, Hubei, China (mainland)
| |
Collapse
|