1
|
Jungblut L, Rizzo SM, Ebner L, Kobe A, Nguyen-Kim TDL, Martini K, Roos J, Puligheddu C, Afshar-Oromieh A, Christe A, Dorn P, Funke-Chambour M, Hötker A, Frauenfelder T. Advancements in lung cancer: a comprehensive perspective on diagnosis, staging, therapy and follow-up from the SAKK Working Group on Imaging in Diagnosis and Therapy Monitoring. Swiss Med Wkly 2024; 154:3843. [PMID: 39835913 DOI: 10.57187/s.3843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
In 2015, around 4400 individuals received a diagnosis of lung cancer, and Switzerland recorded approximately 3200 deaths related to lung cancer. Advances in detection, such as lung cancer screening and improved treatments, have led to increased identification of early-stage lung cancer and higher chances of long-term survival. This progress has introduced new considerations in imaging, emphasising non-invasive diagnosis and characterisation techniques like radiomics. Treatment aspects, such as preoperative assessment and the implementation of immune response evaluation criteria in solid tumours (iRECIST), have also seen advancements. For those undergoing curative treatment for lung cancer, guidelines propose follow-up with computed tomography (CT) scans within a specific timeframe. However, discrepancies exist in published guidelines, and there is a lack of universally accepted recommendations for follow-up procedures. This white paper aims to provide a certain standard regarding the use of imaging on the diagnosis, staging, treatment and follow-up of patients with lung cancer.
Collapse
Affiliation(s)
- Lisa Jungblut
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stefania Maria Rizzo
- Service of Radiology, Imaging Institute of Southern Switzerland, Clinica Di Radiologia EOC, Lugano, Switzerland
| | - Lukas Ebner
- Department of Radiology and Nuclear Medicine, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Adrian Kobe
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thi Dan Linh Nguyen-Kim
- Institute of Radiology and Nuclear Medicine, Stadtspital Triemli Zurich, Zurich, Switzerland
| | - Katharina Martini
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Justus Roos
- Department of Radiology and Nuclear Medicine, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Carla Puligheddu
- Imaging Institute of Southern Switzerland (IIMSI), Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Christe
- Department of Radiology SLS, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Manuela Funke-Chambour
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Hötker
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas Frauenfelder
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Zahari R, Cox J, Obara B. Uncertainty-aware image classification on 3D CT lung. Comput Biol Med 2024; 172:108324. [PMID: 38508053 DOI: 10.1016/j.compbiomed.2024.108324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Early detection is crucial for lung cancer to prolong the patient's survival. Existing model architectures used in such systems have shown promising results. However, they lack reliability and robustness in their predictions and the models are typically evaluated on a single dataset, making them overconfident when a new class is present. With the existence of uncertainty, uncertain images can be referred to medical experts for a second opinion. Thus, we propose an uncertainty-aware framework that includes three phases: data preprocessing and model selection and evaluation, uncertainty quantification (UQ), and uncertainty measurement and data referral for the classification of benign and malignant nodules using 3D CT images. To quantify the uncertainty, we employed three approaches; Monte Carlo Dropout (MCD), Deep Ensemble (DE), and Ensemble Monte Carlo Dropout (EMCD). We evaluated eight different deep learning models consisting of ResNet, DenseNet, and the Inception network family, all of which achieved average F1 scores above 0.832, and the highest average value of 0.845 was obtained using InceptionResNetV2. Furthermore, incorporating the UQ demonstrated significant improvement in the overall model performance. Upon evaluation of the uncertainty estimate, MCD outperforms the other UQ models except for the metric, URecall, where DE and EMCD excel, implying that they are better at identifying incorrect predictions with higher uncertainty levels, which is vital in the medical field. Finally, we show that using a threshold for data referral can greatly improve the performance further, increasing the accuracy up to 0.959.
Collapse
Affiliation(s)
- Rahimi Zahari
- School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Julie Cox
- County Durham and Darlington NHS Foundation Trust, County Durham, UK
| | - Boguslaw Obara
- School of Computing, Newcastle University, Newcastle upon Tyne, UK; Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
3
|
Liu Y, Hsu HY, Lin T, Peng B, Saqi A, Salvatore MM, Jambawalikar S. Lung nodule malignancy classification with associated pulmonary fibrosis using 3D attention-gated convolutional network with CT scans. J Transl Med 2024; 22:51. [PMID: 38216992 PMCID: PMC10787502 DOI: 10.1186/s12967-023-04798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/11/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Chest Computed tomography (CT) scans detect lung nodules and assess pulmonary fibrosis. While pulmonary fibrosis indicates increased lung cancer risk, current clinical practice characterizes nodule risk of malignancy based on nodule size and smoking history; little consideration is given to the fibrotic microenvironment. PURPOSE To evaluate the effect of incorporating fibrotic microenvironment into classifying malignancy of lung nodules in chest CT images using deep learning techniques. MATERIALS AND METHODS We developed a visualizable 3D classification model trained with in-house CT dataset for the nodule malignancy classification task. Three slightly-modified datasets were created: (1) nodule alone (microenvironment removed); (2) nodule with surrounding lung microenvironment; and (3) nodule in microenvironment with semantic fibrosis metadata. For each of the models, tenfold cross-validation was performed. Results were evaluated using quantitative measures, such as accuracy, sensitivity, specificity, and area-under-curve (AUC), as well as qualitative assessments, such as attention maps and class activation maps (CAM). RESULTS The classification model trained with nodule alone achieved 75.61% accuracy, 50.00% sensitivity, 88.46% specificity, and 0.78 AUC; the model trained with nodule and microenvironment achieved 79.03% accuracy, 65.46% sensitivity, 85.86% specificity, and 0.84 AUC. The model trained with additional semantic fibrosis metadata achieved 80.84% accuracy, 74.67% sensitivity, 84.95% specificity, and 0.89 AUC. Our visual evaluation of attention maps and CAM suggested that both the nodules and the microenvironment contributed to the task. CONCLUSION The nodule malignancy classification performance was found to be improving with microenvironment data. Further improvement was found when incorporating semantic fibrosis information.
Collapse
Affiliation(s)
- Yucheng Liu
- Department of Radiology, Columbia University Irving Medical Center, 3-124B Milstein Hospital Bldg, 177 Fort Washington Avenue, New York, NY, 10032, USA.
| | - Hao Yun Hsu
- Department of Radiology, Columbia University Irving Medical Center, 3-124B Milstein Hospital Bldg, 177 Fort Washington Avenue, New York, NY, 10032, USA
| | - Tiffany Lin
- Department of Radiology, Columbia University Irving Medical Center, 3-124B Milstein Hospital Bldg, 177 Fort Washington Avenue, New York, NY, 10032, USA
| | - Boyu Peng
- Department of Radiology, Columbia University Irving Medical Center, 3-124B Milstein Hospital Bldg, 177 Fort Washington Avenue, New York, NY, 10032, USA
| | - Anjali Saqi
- Department of Pathology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mary M Salvatore
- Department of Radiology, Columbia University Irving Medical Center, 3-124B Milstein Hospital Bldg, 177 Fort Washington Avenue, New York, NY, 10032, USA
| | - Sachin Jambawalikar
- Department of Radiology, Columbia University Irving Medical Center, 3-124B Milstein Hospital Bldg, 177 Fort Washington Avenue, New York, NY, 10032, USA
| |
Collapse
|
4
|
Qiao J, Fan Y, Zhang M, Fang K, Li D, Wang Z. Ensemble framework based on attributes and deep features for benign-malignant classification of lung nodule. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Deep Learning Algorithms for Diagnosis of Lung Cancer: A Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:cancers14163856. [PMID: 36010850 PMCID: PMC9405626 DOI: 10.3390/cancers14163856] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/30/2022] [Accepted: 08/04/2022] [Indexed: 12/19/2022] Open
Abstract
We conducted a systematic review and meta-analysis of the diagnostic performance of current deep learning algorithms for the diagnosis of lung cancer. We searched major databases up to June 2022 to include studies that used artificial intelligence to diagnose lung cancer, using the histopathological analysis of true positive cases as a reference. The quality of the included studies was assessed independently by two authors based on the revised Quality Assessment of Diagnostic Accuracy Studies. Six studies were included in the analysis. The pooled sensitivity and specificity were 0.93 (95% CI 0.85−0.98) and 0.68 (95% CI 0.49−0.84), respectively. Despite the significantly high heterogeneity for sensitivity (I2 = 94%, p < 0.01) and specificity (I2 = 99%, p < 0.01), most of it was attributed to the threshold effect. The pooled SROC curve with a bivariate approach yielded an area under the curve (AUC) of 0.90 (95% CI 0.86 to 0.92). The DOR for the studies was 26.7 (95% CI 19.7−36.2) and heterogeneity was 3% (p = 0.40). In this systematic review and meta-analysis, we found that when using the summary point from the SROC, the pooled sensitivity and specificity of DL algorithms for the diagnosis of lung cancer were 93% and 68%, respectively.
Collapse
|
6
|
Silva F, Pereira T, Neves I, Morgado J, Freitas C, Malafaia M, Sousa J, Fonseca J, Negrão E, Flor de Lima B, Correia da Silva M, Madureira AJ, Ramos I, Costa JL, Hespanhol V, Cunha A, Oliveira HP. Towards Machine Learning-Aided Lung Cancer Clinical Routines: Approaches and Open Challenges. J Pers Med 2022; 12:480. [PMID: 35330479 PMCID: PMC8950137 DOI: 10.3390/jpm12030480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 12/15/2022] Open
Abstract
Advancements in the development of computer-aided decision (CAD) systems for clinical routines provide unquestionable benefits in connecting human medical expertise with machine intelligence, to achieve better quality healthcare. Considering the large number of incidences and mortality numbers associated with lung cancer, there is a need for the most accurate clinical procedures; thus, the possibility of using artificial intelligence (AI) tools for decision support is becoming a closer reality. At any stage of the lung cancer clinical pathway, specific obstacles are identified and "motivate" the application of innovative AI solutions. This work provides a comprehensive review of the most recent research dedicated toward the development of CAD tools using computed tomography images for lung cancer-related tasks. We discuss the major challenges and provide critical perspectives on future directions. Although we focus on lung cancer in this review, we also provide a more clear definition of the path used to integrate AI in healthcare, emphasizing fundamental research points that are crucial for overcoming current barriers.
Collapse
Affiliation(s)
- Francisco Silva
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- FCUP—Faculty of Science, University of Porto, 4169-007 Porto, Portugal
| | - Tania Pereira
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
| | - Inês Neves
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- ICBAS—Abel Salazar Biomedical Sciences Institute, University of Porto, 4050-313 Porto, Portugal
| | - Joana Morgado
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
| | - Cláudia Freitas
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Mafalda Malafaia
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- FEUP—Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Joana Sousa
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
| | - João Fonseca
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- FEUP—Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Eduardo Negrão
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
| | - Beatriz Flor de Lima
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
| | - Miguel Correia da Silva
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
| | - António J. Madureira
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - Isabel Ramos
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - José Luis Costa
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Venceslau Hespanhol
- CHUSJ—Centro Hospitalar e Universitário de São João, 4200-319 Porto, Portugal; (C.F.); (E.N.); (B.F.d.L.); (M.C.d.S.); (A.J.M.); (I.R.); (V.H.)
- FMUP—Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal;
| | - António Cunha
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- UTAD—University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal
| | - Hélder P. Oliveira
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, 4200-465 Porto, Portugal; (I.N.); (J.M.); (M.M.); (J.S.); (J.F.); (A.C.); (H.P.O.)
- FCUP—Faculty of Science, University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
7
|
Chiu HY, Chao HS, Chen YM. Application of Artificial Intelligence in Lung Cancer. Cancers (Basel) 2022; 14:1370. [PMID: 35326521 PMCID: PMC8946647 DOI: 10.3390/cancers14061370] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the leading cause of malignancy-related mortality worldwide due to its heterogeneous features and diagnosis at a late stage. Artificial intelligence (AI) is good at handling a large volume of computational and repeated labor work and is suitable for assisting doctors in analyzing image-dominant diseases like lung cancer. Scientists have shown long-standing efforts to apply AI in lung cancer screening via CXR and chest CT since the 1960s. Several grand challenges were held to find the best AI model. Currently, the FDA have approved several AI programs in CXR and chest CT reading, which enables AI systems to take part in lung cancer detection. Following the success of AI application in the radiology field, AI was applied to digitalized whole slide imaging (WSI) annotation. Integrating with more information, like demographics and clinical data, the AI systems could play a role in decision-making by classifying EGFR mutations and PD-L1 expression. AI systems also help clinicians to estimate the patient's prognosis by predicting drug response, the tumor recurrence rate after surgery, radiotherapy response, and side effects. Though there are still some obstacles, deploying AI systems in the clinical workflow is vital for the foreseeable future.
Collapse
Affiliation(s)
- Hwa-Yen Chiu
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Division of Internal Medicine, Hsinchu Branch, Taipei Veterans General Hospital, Hsinchu 310, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Heng-Sheng Chao
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|