1
|
Liu W, Shi T, Zheng D, Ke G, Chen J. Identification of allograft inflammatory factor-1 suppressing the progression and indicating good prognosis of osteosarcoma. BMC Musculoskelet Disord 2024; 25:233. [PMID: 38521928 PMCID: PMC10960474 DOI: 10.1186/s12891-024-07363-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/19/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Osteosarcoma is one of the most common cancers worldwide. Intense efforts have been made to elucidate the pathogeny, but the mechanisms of osteosarcoma are still not well understood. We aimed to investigate the potential biomarker, allograft inflammatory factor-1 (AIF1), affecting the progression and prognosis of osteosarcoma. METHODS Three microarray datasets were downloaded from GEO datasets and one was obtained from the TCGA dataset. The differentially expressed genes (DEGs) were identified. GO and KEGG functional enrichment analyses of overlapped DEGs were performed. The PPI network of overlapped DEGs was constructed by STRING and visualized with Cytoscape. Overall survival (OS) and Metastasis free survival (MFS) were analyzed from GSE21257. Finally, the effect of the most relevant core gene affecting the progression of osteosarcoma was examined in vitro. RESULTS One hundred twenty six DEGs were identified, consisting of 65 upregulated and 61 downregulated genes. Only AIF1 was significantly associated with OS and MFS. It was found that AIF1 could be enriched into the NF-κB signaling pathway. GSEA and ssGSEA analyses showed that AIF1 was associated with the immune invasion of tumors. Cell experiments showed that AIF1 was underexpressed in osteosarcoma cell lines, while the malignant propriety was attenuated after overexpressing the expression of AIF1. Moreover, AIF1 also affects the expression of the NF-κB pathway. CONCLUSION In conclusion, DEGs and hub genes identified in the present study help us understand the molecular mechanisms underlying the carcinogenesis and progression of osteosarcoma, and provide candidate targets for diagnosis and treatment of osteosarcoma.
Collapse
Affiliation(s)
- Wenda Liu
- Department of Orthopedics, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, Hubei Province, P. R. China
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P.R. China
| | - Tao Shi
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P.R. China
| | - Di Zheng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, P.R. China
| | - Guangshui Ke
- Department of Orthopedics, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, Hubei Province, P. R. China
| | - Jingteng Chen
- Department of Orthopedics, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, Hubei Province, P. R. China.
| |
Collapse
|
2
|
Tsai WL, Cheng JS, Liu PF, Chang TH, Sun WC, Chen WC, Shu CW. Sofosbuvir induces gene expression for promoting cell proliferation and migration of hepatocellular carcinoma cells. Aging (Albany NY) 2022; 14:5710-5726. [PMID: 35833210 PMCID: PMC9365546 DOI: 10.18632/aging.204170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 05/13/2022] [Indexed: 11/29/2022]
Abstract
Direct-acting antivirals (DAAs) have achieved a sustained virological response (SVR) rate of 95–99% in treating HCV. Several studies suggested that treatment with sofosbuvir (SOF), one type of DAAs, may be associated with increased risk of developing HCC. The aim of this study is to investigate the potential mechanisms of SOF on the development of HCC. OR-6 (harboring full-length genotype 1b HCV) and Huh 7.5.1 cells were used to examine the effects of SOF on cell proliferation and migration of HCC cells. SOF-upregulated genes in OR-6 cells were inspected using next generation sequencing (NGS)and the clinical significance of these candidate genes was analyzed using The Cancer Genome Atlas (TCGA) database. We found that SOF increased cell proliferation and cell migration in OR-6 and Huh 7.5.1 cells. Several SOF-upregulated genes screened from NGS were confirmed by real-time PCR in OR-6 cells. Among these genes, PHOSPHO2, KLHL23, TRIM39, TSNAX-DISC1 and RPP21 expression were significantly elevated in the tumor tissues compared with the non-tumor tissues of HCC according to TCGA database. High expression of PHOSPHO2 and RPP21 was associated with poor overall survival of HCC patients. Moreover, knockdown of PHOSPHO2-KLHL23, TSNAX-DISC1, TRIM39 and RPP21 diminished cell proliferation and migration increased by SOF in OR-6 and Huh 7.5.1 cells. In conclusion, SOF-upregulated genes promoted HCC cell proliferation and migration, which might be associated with the development of HCC.
Collapse
Affiliation(s)
- Wei-Lun Tsai
- Division of General Internal Medicine, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,School of Nursing, Fooyin University, Kaohsiung, Taiwan
| | - Jin-Shiung Cheng
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Tsung-Hsien Chang
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Chih Sun
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Wen-Chi Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chih-Wen Shu
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Yu Y, You S, Fan R, Shan X. UCK2 regulated by miR-139-3p regulates the progression of hepatocellular carcinoma cells. Future Oncol 2022; 18:979-990. [PMID: 35137600 DOI: 10.2217/fon-2021-0271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective: This study mainly explores how UCK2 impacts the progression of hepatocellular carcinoma (HCC). Methods: Mature miRNA and mRNA expression data along with the clinical data of HCC were provided by The Cancer Genome Atlas to mine differentially expressed miRNAs and mRNAs. Expression levels of UCK2 and miR-139-3p in HCC were tested through quantitative real-time PCR. How UCK2 and miR-139-3p impacted HCC cell activities were detected by Transwell, wound healing and cell proliferation approaches. Whether miR-139-3p could bind to UCK2 was detected by dual-luciferase assay. Results: This investigation found evidently high levels of UCK2 in both HCC tissue and cells and its marked association with poor prognosis. Overexpression of UCK2 could significantly promote the behaviors of HCC cells. In addition, poorly expressed miR-139-3p was inversely associated with UCK2. Dual-luciferase method also proved the association. The rescue experiment showed that miR-139-3p regulated cell behaviors in HCC through targeting UCK2. Conclusion: Highly expressed UCK2 was mediated by miR-139-3p to modulate cell behaviors in HCC. It is assumed that UCK2 is a possible target of HCC for cancer therapy purposes.
Collapse
Affiliation(s)
- Youlin Yu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Shaoxing University, Shaoxing 312000, Zhejiang Province, China
| | - Shuqing You
- Department of Pathology, Taizhou First People's Hospital, Taizhou 318020, Zhejinag Province, China
| | - Rengen Fan
- Department of General Surgery, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School (The First people's Hospital of Yancheng), Yancheng 224006, Jiangsu Province, China
| | - Xiangxiang Shan
- Department of Geriatrics, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School (The First people's Hospital of Yancheng), Yancheng 224006, Jiangsu Province, China
| |
Collapse
|
4
|
Wang J, Li Y, Zhang C, Chen X, Zhu L, Luo T. Characterization of diagnostic and prognostic significance of cell cycle-linked genes in hepatocellular carcinoma. Transl Cancer Res 2022; 10:4636-4651. [PMID: 35116320 PMCID: PMC8799204 DOI: 10.21037/tcr-21-1145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022]
Abstract
Background The high degree of heterogeneity of hepatocellular carcinoma (HCC) imposes a significant challenge to predict the prognosis. Currently, increasing evidence has indicated that cell cycle-linked genes are strongly linked to occurrence and progress of HCC. Herein, we purposed to create a prediction model on the basis of cell cycle-linked genes. Methods The transcriptome along with clinicopathological data abstracted from The Cancer Genome Atlas (TCGA) were used as a training cohort. Lasso regression analysis was employed to create a prediction model in TCGA cohort. The data of samples obtained from the International Cancer Genome Consortium (ICGC) data resource were applied in the verification of the model. A series of bioinformatics analyzed the relationship of the risk signature with overall survival (OS), biological function, and clinicopathological features. Results Six cell cycle-linked genes (PLK1, CDC20, HSP90AA1, CHEK1, HDAC1, and NDC80) were chosen to create the prognostic model, demonstrating a good prognostic capacity. Further analyses indicated that the model could independently assess the OS of HCC patients. A single-sample gene set enrichment analysis (ssGSEA) indicated that the risk signature was remarkably linked to immune status. Additionally, there was a remarkable association of the risk signature with TP53 mutation frequency, as well as immune checkpoint molecule expression levels. Conclusions We created a prediction model using six cell cycle-linked genes to predict HCC prognosis. The six genes are expected to be novel markers for HCC diagnosis, as well as treatment.
Collapse
Affiliation(s)
- Jukun Wang
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yu Li
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Chao Zhang
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Xin Chen
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Linzhong Zhu
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Tao Luo
- Department of General Surgery, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Liang F, Peng L, Ma YG, Hu W, Zhang WB, Deng M, Li YM. Bioinformatics analysis and experimental validation of differentially expressed genes in mouse articular chondrocytes treated with IL-1β using microarray data. Exp Ther Med 2022; 23:6. [PMID: 34815758 PMCID: PMC8593859 DOI: 10.3892/etm.2021.10928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent chronic degenerative disease that affects the health of the elderly. The present study aimed to identify significant genes involved in OA via bioinformatics analysis. A gene expression dataset (GSE104793) was downloaded from the Gene Expression Omnibus. Bioinformatics analysis was then performed in order to identify differentially expressed genes (DEGs) between untreated chondrocytes and chondrocytes cultured with interleukin-1β (IL-1β) for 24 h. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed using Metascape. A protein-protein interaction network of DEGs was constructed using the Search Tool for the Retrieval of Interacting Genes. Gene set enrichment analysis (GSEA) was performed using GSEA software. Furthermore, chondrocytes were extracted and treated with IL-1β (10 ng/ml) for 24 h, and reverse-transcription quantitative PCR was used to confirm differential expression of hub genes. Patient samples were also collected to verify the bioinformatic analysis results. Based on the cut-off criteria used for determination of the DEGs, a total of 844 DEGs, including 498 upregulated and 346 downregulated DEGs, were identified. The DEGs were mainly enriched in the GO terms and KEGG pathways 'inflammatory response', 'negative regulation of cell proliferation', 'ossification', 'taxis', 'blood vessel morphogenesis', 'extracellular structure organization', 'mitotic cell cycle process' and 'TNF signaling pathway'. The majority of the PCR results, namely the differential expression of kininogen 2, complement C3, cyclin B1, cell division cycle 20, cyclin A2, 1-phosphatidylinositol 4-kinase, BUB1 mitotic checkpoint serine/threonine kinase, kinesin family member 11, cyclin B2 and BUB1 mitotic checkpoint serine/threonine kinase B were consistent with the bioinformatics results. Collectively, the present observations provided a regulation network of IL-1β-stimulated chondrocytes, which may provide potential targets of OA therapy.
Collapse
Affiliation(s)
- Fan Liang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Le Peng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yong-Gang Ma
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Hu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei-Bing Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ming Deng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ya-Ming Li
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
6
|
Chen J, Liao Y, Fan X. Prognostic and clinicopathological value of BUB1B expression in patients with lung adenocarcinoma: a meta-analysis. Expert Rev Anticancer Ther 2021; 21:795-803. [PMID: 33764838 DOI: 10.1080/14737140.2021.1908132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Abnormal BUB1B expression has been proven to be related to the poor prognosis of various tumors. This meta-analysis aimed to identify the prognostic role of BUB1B in patients with lung adenocarcinoma (LUAD). RESEARCH DESIGN AND METHODS Relevant studies from the PubMed, Embase, Web of Science, and Cochrane Library databases and two public databases that stored sequencing data were retrieved. The standardized mean difference (SMD) and 95% confidence intervals (CIs) for the association between the BUB1B expression level and clinical characteristics were calculated. Pooled hazard ratios (HRs) and 95% CIs were calculated to estimate the association between BUB1B expression and survival outcomes. RESULTS A total of 16 studies involving 2771 LUAD patients with BUB1B expression were included in this meta-analysis. Patients with older age showed low BUB1B expression. High BUB1B expression was associated with male sex, a smoking history, and an advanced TNM stage. High BUB1B expression was predictive of poor overall survival (OS) and progression-free survival (PFS). In addition, no publication bias was found. CONCLUSIONS This meta-analysis demonstrates that BUB1B is a significant biomarker for a poor prognosis and poor clinicopathological outcomes in patients with LUAD.
Collapse
Affiliation(s)
- Jie Chen
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Office of Disciplines Construction & Academic Degree, Graduate School of Southwest Medical University, Luzhou, China
| | - Yi Liao
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xianming Fan
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Inflammation & Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Fu J, Zhang X, Yan L, Shao Y, Liu X, Chu Y, Xu G, Xu X. Identification of the hub gene BUB1B in hepatocellular carcinoma via bioinformatic analysis and in vitro experiments. PeerJ 2021; 9:e10943. [PMID: 33665036 PMCID: PMC7908873 DOI: 10.7717/peerj.10943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/24/2021] [Indexed: 12/13/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers and the fourth leading cause of cancer-related deaths in the world. Although the treatment of HCC has made great progress in recent years, the therapeutic effects on HCC are still unsatisfactory due to difficulty in early diagnosis, chemoresistance and high recurrence rate post-surgery. Methods In this study, we identified differentially expressed genes (DEGs) based on four Gene Expression Omnibus (GEO) datasets (GSE45267, GSE98383, GSE101685 and GSE112790) between HCC and normal hepatic tissues. A protein–protein interaction (PPI) network was established to identify the central nodes associated with HCC. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the central nodes were conducted to find the hub genes. The expression levels of the hub genes were validated based on the ONCOMINE and Gene Expression Profiling Interactive Analysis (GEPIA) databases. Additionally, the genetic alterations of the hub genes were evaluated by cBioPortal. The role of the hub genes on the overall survival (OS) and relapse survival (RFS) of HCC patients was evaluated by Kaplan-Meier plotter. At last, the mechanistic role of the hub genes was illustrated by in vitro experiments. Results We found the following seven hub genes: BUB1B, CCNB1, CCNB2, CDC20, CDK1, MAD2L1 and RRM2 using integrated bioinformatics analysis. All of the hub genes were significantly upregulated in HCC tissues. And the seven hub genes were associated with the OS and RFS of HCC patients. Finally, in vitro experiments indicated that BUB1B played roles in HCC cell proliferation, migration, invasion, apoptosis and cell cycle by partially affecting mitochondrial functions. Conclusions In summary, we identified seven hub genes that were associated with the expression and prognosis of HCC. The mechanistic oncogenic role of BUB1B in HCC was first illustrated. BUB1B might play an important role in HCC and could be potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Jie Fu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Provincial Key Laboratory of Hepatobiliary Disease Research, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao Zhang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Provincial Key Laboratory of Hepatobiliary Disease Research, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Likun Yan
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Provincial Key Laboratory of Hepatobiliary Disease Research, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaoli Shao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Provincial Key Laboratory of Hepatobiliary Disease Research, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xinxu Liu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Provincial Key Laboratory of Hepatobiliary Disease Research, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuan Chu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Provincial Key Laboratory of Hepatobiliary Disease Research, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ge Xu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Provincial Key Laboratory of Hepatobiliary Disease Research, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xundi Xu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Provincial Key Laboratory of Hepatobiliary Disease Research, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Niu Y, Shan L, Gao H, Zhang C, Qian Z, Wang Z, Xu X, Zhang X, Wang J, Ma L, Chen L, Yu Y. Huaier Suppresses the Hepatocellular Carcinoma Cell Cycle by Regulating Minichromosome Maintenance Proteins. Onco Targets Ther 2020; 13:12015-12025. [PMID: 33244243 PMCID: PMC7685376 DOI: 10.2147/ott.s279723] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/07/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose Hepatocellular carcinoma (HCC) is a common malignant tumor with limited treatment. Our previous studies demonstrated that Huaier enhanced chemotherapy sensitivity and restrained HCC proliferation. This study aimed to identify differentially expressed proteins with Huaier treatment in HCC cells, providing molecular targets for future targeted therapy of HCC. Materials and Methods The effects of Huaier on the cell cycle were determined by flow cytometry and Western blot (WB). Xenograft models were used to verify the effects of Huaier on tumor growth. Then, proteomics was performed to identify the potential proteins regulated by Huaier. The enrichment analysis of GO and KEGG was performed for the differentially expressed proteins. Western blot (WB) and immunohistochemistry (IHC) were used to detect the levels of proteins after Huaier treatment. After that the correlation of differentially expressed proteins with pathological stages was analyzed via the GEPIA database. We also analyzed candidate expression after Huaier treatment in HCC cells by WB and qRT-PCR. Furthermore, siRNA was performed to verify the targeted regulation of Huaier on candidate proteins. Results First, the proteomics data showed that a total of 160 proteins were identified as differentially expressed proteins, among which six minichromosome maintenance (MCM) family members were enriched in the tumor-associated pathways after Huaier treatment. Moreover, MCM proteins were highly expressed in HCC and closely correlated with the survival of HCC patients. Finally, we confirmed that MCM proteins were targets of Huaier treatment in HCC cells. Conclusion Huaier treatment was closely associated with the activation and inhibition of cancer-related pathways, and the MCM family was identified as a potential target in the antitumor process of Huaier. This study is helpful in understanding the molecular alterations and clinical relevance of HCC after Huaier treatment, which is beneficial for finding new targets and designing effective chemotherapy regimens for the future treatment of HCC.
Collapse
Affiliation(s)
- Yongjie Niu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Liang Shan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Han Gao
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Congcong Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Zijun Qian
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Zhixian Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Xin Xu
- Institute for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Xiao Zhang
- Institute for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Jiayi Wang
- Institute for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Lifang Ma
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China.,Institute for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Liyun Chen
- Institute of Science, Technology and Humanities of Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Yongchun Yu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China.,Institute for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| |
Collapse
|