1
|
Zhu Z, Shi Y. Poly (ADP-ribose) polymerase inhibitors in cancer therapy. Chin Med J (Engl) 2025; 138:634-650. [PMID: 39932206 PMCID: PMC11925422 DOI: 10.1097/cm9.0000000000003471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Indexed: 03/17/2025] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) have emerged as critical agents for cancer therapy. By inhibiting the catalytic activity of PARP enzymes and trapping them in the DNA, PARPis disrupt DNA repair, ultimately leading to cell death, particularly in cancer cells with homologous recombination repair deficiencies, such as those harboring BRCA mutations. This review delves into the mechanisms of action of PARPis in anticancer treatments, including the inhibition of DNA repair, synthetic lethality, and replication stress. Furthermore, the clinical applications of PARPis in various cancers and their adverse effects as well as their combinations with other therapies and the mechanisms underlying resistance are summarized. This review provides comprehensive insights into the role and mechanisms of PARP and PARPis in DNA repair, with a particular focus on the potential of PARPi-based therapies in precision medicine for cancer treatment.
Collapse
Affiliation(s)
- Ziqi Zhu
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yujun Shi
- Department of Pathology & Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
2
|
Philips TJ, Erickson BK, Thomas SN. Opportunities for predictive proteogenomic biomarkers of drug treatment sensitivity in epithelial ovarian cancer. Front Oncol 2025; 14:1503107. [PMID: 39839766 PMCID: PMC11746003 DOI: 10.3389/fonc.2024.1503107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
Genomic analysis has played a significant role in the identification of driver mutations that are linked to disease progression and response to drug treatment in ovarian cancer. A prominent example is the stratification of epithelial ovarian cancer (EOC) patients with homologous recombination deficiency (HRD) characterized by mutations in DNA damage repair genes such as BRCA1/2 for treatment with PARP inhibitors. However, recent studies have shown that some epithelial ovarian tumors respond to PARP inhibitors irrespective of their HRD or BRCA mutation status. An exclusive focus on the genome overlooks the significant insight that can be gained from other biological analytes, including proteins, which carry out cellular functions. Proteogenomics is the integration of genomics, transcriptomics, epigenomics and proteomics data. This review paper provides novel insight into the role of proteogenomics as an analytical approach to identify predictive biomarkers of drug treatment response in epithelial ovarian cancer. Proteogenomic analysis can facilitate the identification of predictive biomarkers of drug treatment response, consequently greatly improving the stratification of patients with EOC for treatment towards a goal of personalized medicine.
Collapse
Affiliation(s)
- Trudy J. Philips
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Britt K. Erickson
- Department of Obstetrics, Gynecology and Women’s Health, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Stefani N. Thomas
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, Minneapolis, MN, United States
| |
Collapse
|
3
|
Santiago-O’Farrill JM, Blessing Bollu A, Yang H, Orellana V, Pina M, Zhang X, Liu J, Bast RC, Lu Z. Crizotinib Enhances PARP Inhibitor Efficacy in Ovarian Cancer Cells and Xenograft Models by Inducing Autophagy. Mol Cancer Res 2024; 22:840-851. [PMID: 38780897 PMCID: PMC11372360 DOI: 10.1158/1541-7786.mcr-23-0680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/02/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPi) can encounter resistance through various mechanisms, limiting their effectiveness. Our recent research showed that PARPi alone can induce drug resistance by promoting autophagy. Moreover, our studies have revealed that anaplastic lymphoma kinase (ALK) plays a role in regulating the survival of ovarian cancer cells undergoing autophagy. Here, we explored whether the ALK-inhibitor crizotinib could enhance the efficacy of PARPi by targeting drug-induced autophagic ovarian cancer cell and xenograft models. Our investigation demonstrates that crizotinib enhances the anti-tumor activity of PARPi across multiple ovarian cancer cells. Combination therapy with crizotinib and olaparib reduced cell viability and clonogenic growth in two-olaparib resistant cell lines. More importantly, this effect was consistently observed in patient-derived organoids. Furthermore, combined treatment with crizotinib and olaparib led to tumor regression in human ovarian xenograft models. Mechanistically, the combination resulted in increased levels of reactive oxygen species (ROS), induced DNA damage, and decreased the phosphorylation of AKT, mTOR, and ULK-1, contributing to increased olaparib-induced autophagy and apoptosis. Notably, pharmacologic, or genetic inhibition or autophagy reduced the sensitivity of ovarian cancer cell lines to olaparib and crizotinib treatment, underscoring the role of autophagy in cell death. Blocking ROS mitigated olaparib/crizotinib-induced autophagy and cell death while restoring levels of phosphorylated AKT, mTOR and ULK-1. These findings suggest that crizotinib can improve the therapeutic efficacy of olaparib by enhancing autophagy. Implications: The combination of crizotinib and PARPi presents a promising strategy, that could provide a novel approach to enhance outcomes for patients with ovarian cancer.
Collapse
Affiliation(s)
| | - Alicia Blessing Bollu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Hailing Yang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Vivian Orellana
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Marc Pina
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Xudong Zhang
- Department of Pathology/Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Jinsong Liu
- Department of Pathology/Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Robert C. Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Zhen Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
4
|
Adrianto N, Mangkuliguna G, Tandiono EJ, Sibarani CNR. Efficacy and safety of rucaparib in patients with recurrent high-grade ovarian carcinoma: A systematic review and meta-analysis. Taiwan J Obstet Gynecol 2024; 63:601-609. [PMID: 39266137 DOI: 10.1016/j.tjog.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 09/14/2024] Open
Abstract
Ovarian cancer stands as the third most prevalent gynecological malignancy. The advent of PARP inhibitors, particularly rucaparib, has revolutionized the landscape of advanced ovarian cancer treatment, demonstrating notable efficacy with minimal toxicity, especially in patients not previously exposed to PARP inhibitors. Rucaparib's precision-driven approach, targeting specific genetic mutations, disrupts DNA repair mechanisms, resulting in cytotoxic effects on neoplastic cells. This comprehensive review delves into the clinical efficacy and safety profile of rucaparib in recurrent ovarian cancer, showcasing its promising therapeutic approach. A systematic search of studies reporting rucaparib efficacy and safety, up to September 2023, was conducted across various reputable databases and sources. The meta-analysis of seven articles revealed a pooled objective response rate (ORR) of 0.331 (95% CI, 0.221-0.449; I2 = 92.4%), underscoring rucaparib's efficacy, particularly evident in the BRCA-mutated cohort. Rucaparib consistently outperformed controls in progression-free survival (PFS) and overall survival (OS). Safety evaluations indicated that 98.7% of patients experienced treatment-emergent adverse events (TEAEs), with 61% being grade ≥3. Notable TEAEs included nausea (69.0%), fatigue (66.8%), vomiting (37.3%), and constipation (32.1%). Hematological concerns comprised anemia (47.9%), thrombocytopenia, elevated AST/ALT (37.3%), and serum creatinine levels (19.7%). Despite favourable outcomes, the rucaparib group recorded higher event rates across various metrics than controls. The findings underscore the need for meticulous monitoring and dose adjustments to optimize therapeutic outcomes and mitigate the increased risks associated with adverse events. International Prospective Register of Systematic Review Identifier: CRD42023459646.
Collapse
Affiliation(s)
- Nicholas Adrianto
- School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya No.2, Penjaringan, North Jakarta, Daerah Khusus Ibukota, Jakarta 14440, Indonesia.
| | - Ghea Mangkuliguna
- School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya No.2, Penjaringan, North Jakarta, Daerah Khusus Ibukota, Jakarta 14440, Indonesia
| | - Eunike Jennifer Tandiono
- School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Pluit Raya No.2, Penjaringan, North Jakarta, Daerah Khusus Ibukota, Jakarta 14440, Indonesia
| | - Candra Novi Ricardo Sibarani
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Padjadjaran University, Dr. Hasan Sadikin General Hospital, Jl. Pasteur No.38, Pasteur, Bandung, West Java, 40161, Indonesia
| |
Collapse
|
5
|
Das PK, Matada GSP, Pal R, Maji L, Dhiwar PS, Manjushree BV, Viji MP. Poly (ADP-ribose) polymerase (PARP) inhibitors as anticancer agents: An outlook on clinical progress, synthetic strategies, biological activity, and structure-activity relationship. Eur J Med Chem 2024; 274:116535. [PMID: 38838546 DOI: 10.1016/j.ejmech.2024.116535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Poly (ADP-ribose) polymerase (PARP) is considered an essential component in case of DNA (Deoxyribonucleic acid) damage, response by sensing DNA damage and engaging DNA repair proteins. Those proteins repair the damaged DNA via an aspect of posttranslational modification, known as poly (ADP-Ribosyl)ation (PARylation). Specifically, PARP inhibitors (PARPi) have shown better results when administered alone in a variety of cancer types with BRCA (Breast Cancer gene) mutation. The clinical therapeutic benefits of PARP inhibitors have been diminished by their cytotoxicity, progression of drug resistance, and limitation of indication, regardless of their tremendous clinical effectiveness. A growing number of PARP-1 inhibitors, particularly those associated with BRCA-1/2 mutations, have been identified as potential cancer treatments. Recently, several researchers have identified various promising scaffolds, which have resulted in the resuscitation of the faith in PARP inhibitors as cancer therapies. This review provided a comprehensive update on the anatomy and physiology of the PARP enzyme, the profile of FDA (Food and Drug Administration) and CFDA (China Food and Drug Administration)-approved drugs, and small-molecule inhibitors of PARP, including their synthetic routes, biological evaluation, selectivity, and structure-activity relationship.
Collapse
Affiliation(s)
- Pronoy Kanti Das
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Lalmohan Maji
- Tarifa Memorial Institute of Pharmacy, Department of Pharmaceutical Chemistry, Murshidabad, 742166, West Bengal, India
| | - Prasad Sanjay Dhiwar
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - B V Manjushree
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - M P Viji
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| |
Collapse
|
6
|
Biegała Ł, Gajek A, Szymczak-Pajor I, Marczak A, Śliwińska A, Rogalska A. Targeted inhibition of the ATR/CHK1 pathway overcomes resistance to olaparib and dysregulates DNA damage response protein expression in BRCA2 MUT ovarian cancer cells. Sci Rep 2023; 13:22659. [PMID: 38114660 PMCID: PMC10730696 DOI: 10.1038/s41598-023-50151-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023] Open
Abstract
Olaparib is a PARP inhibitor (PARPi) approved for targeted treatment of ovarian cancer (OC). However, its efficacy is impeded by the inevitable occurrence of resistance. Here, we investigated whether the cytotoxic activity of olaparib could be synergistically enhanced in olaparib-resistant OC cells with BRCA2 reversion mutation by the addition of inhibitors of the ATR/CHK1 pathway. Moreover, we provide insights into alterations in the DNA damage response (DDR) pathway induced by combination treatments. Antitumor activity of olaparib alone or combined with an ATR inhibitor (ATRi, ceralasertib) or CHK1 inhibitor (CHK1i, MK-8776) was evaluated in OC cell lines sensitive (PEO1, PEO4) and resistant (PEO1-OR) to olaparib. Antibody microarrays were used to explore changes in expression of 27 DDR-related proteins. Olaparib in combination with ATR/CHK1 inhibitors synergistically induced a decrease in viability and clonogenic survival and an increase in apoptosis mediated by caspase-3/7 in all OC cells. Combination treatments induced cumulative alterations in expression of DDR-related proteins mediating distinct DNA repair pathways and cell cycle control. In the presence of ATRi and CHK1i, olaparib-induced upregulation of proteins determining cell fate after DNA damage (PARP1, CHK1, c-Abl, Ku70, Ku80, MDM2, and p21) was abrogated in PEO1-OR cells. Overall, the addition of ATRi or CHK1i to olaparib effectively overcomes resistance to PARPi exerting anti-proliferative effect in BRCA2MUT olaparib-resistant OC cells and alters expression of DDR-related proteins. These new molecular insights into cellular response to olaparib combined with ATR/CHK1 inhibitors might help improve targeted therapies for olaparib-resistant OC.
Collapse
Affiliation(s)
- Łukasz Biegała
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236, Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 21/23 Jana Matejki Street, 90-237, Lodz, Poland
| | - Arkadiusz Gajek
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236, Lodz, Poland
| | - Izabela Szymczak-Pajor
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Street, 92-213, Lodz, Poland
| | - Agnieszka Marczak
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236, Lodz, Poland
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 251 Pomorska Street, 92-213, Lodz, Poland
| | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236, Lodz, Poland.
| |
Collapse
|
7
|
Machuca-Aguado J, Conde-Martín AF, Alvarez-Muñoz A, Rodríguez-Zarco E, Polo-Velasco A, Rueda-Ramos A, Rendón-García R, Ríos-Martin JJ, Idoate MA. Machine Learning Quantification of Intraepithelial Tumor-Infiltrating Lymphocytes as a Significant Prognostic Factor in High-Grade Serous Ovarian Carcinomas. Int J Mol Sci 2023; 24:16060. [PMID: 38003250 PMCID: PMC10671555 DOI: 10.3390/ijms242216060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
The prognostic and predictive role of tumor-infiltrating lymphocytes (TILs) has been demonstrated in various neoplasms. The few publications that have addressed this topic in high-grade serous ovarian carcinoma (HGSOC) have approached TIL quantification from a semiquantitative standpoint. Clinical correlation studies, therefore, need to be conducted based on more accurate TIL quantification. We created a machine learning system based on H&E-stained sections using 76 molecularly and clinically well-characterized advanced HGSOC. This system enabled immune cell classification. These immune parameters were subsequently correlated with overall survival (OS) and progression-free survival (PFI). An intense colonization of the tumor cords by TILs was associated with a better prognosis. Moreover, the multivariate analysis showed that the intraephitelial (ie) TILs concentration was an independent and favorable prognostic factor both for OS (p = 0.02) and PFI (p = 0.001). A synergistic effect between complete surgical cytoreduction and high levels of ieTILs was evidenced, both in terms of OS (p = 0.0005) and PFI (p = 0.0008). We consider that digital analysis with machine learning provided a more accurate TIL quantification in HGSOC. It has been demonstrated that ieTILs quantification in H&E-stained slides is an independent prognostic parameter. It is possible that intraepithelial TIL quantification could help identify candidate patients for immunotherapy.
Collapse
Affiliation(s)
- Jesús Machuca-Aguado
- Department of Pathology, Virgen Macarena University Hospital & School of Medicine, University of Seville, 41009 Seville, Spain; (J.M.-A.); (A.F.C.-M.); (A.A.-M.); (E.R.-Z.); (R.R.-G.); (J.J.R.-M.)
| | - Antonio Félix Conde-Martín
- Department of Pathology, Virgen Macarena University Hospital & School of Medicine, University of Seville, 41009 Seville, Spain; (J.M.-A.); (A.F.C.-M.); (A.A.-M.); (E.R.-Z.); (R.R.-G.); (J.J.R.-M.)
| | - Alejandro Alvarez-Muñoz
- Department of Pathology, Virgen Macarena University Hospital & School of Medicine, University of Seville, 41009 Seville, Spain; (J.M.-A.); (A.F.C.-M.); (A.A.-M.); (E.R.-Z.); (R.R.-G.); (J.J.R.-M.)
| | - Enrique Rodríguez-Zarco
- Department of Pathology, Virgen Macarena University Hospital & School of Medicine, University of Seville, 41009 Seville, Spain; (J.M.-A.); (A.F.C.-M.); (A.A.-M.); (E.R.-Z.); (R.R.-G.); (J.J.R.-M.)
| | - Alfredo Polo-Velasco
- Gynecology Department, Virgen Macarena University Hospital & School of Medicine, University of Seville, 41009 Seville, Spain;
| | - Antonio Rueda-Ramos
- Oncology Department, Virgen Macarena University Hospital & School of Medicine, University of Seville, 41009 Seville, Spain;
| | - Rosa Rendón-García
- Department of Pathology, Virgen Macarena University Hospital & School of Medicine, University of Seville, 41009 Seville, Spain; (J.M.-A.); (A.F.C.-M.); (A.A.-M.); (E.R.-Z.); (R.R.-G.); (J.J.R.-M.)
| | - Juan José Ríos-Martin
- Department of Pathology, Virgen Macarena University Hospital & School of Medicine, University of Seville, 41009 Seville, Spain; (J.M.-A.); (A.F.C.-M.); (A.A.-M.); (E.R.-Z.); (R.R.-G.); (J.J.R.-M.)
| | - Miguel A. Idoate
- Department of Pathology, Virgen Macarena University Hospital & School of Medicine, University of Seville, 41009 Seville, Spain; (J.M.-A.); (A.F.C.-M.); (A.A.-M.); (E.R.-Z.); (R.R.-G.); (J.J.R.-M.)
| |
Collapse
|
8
|
Pai FT, Lin WJ. Synergistic cytotoxicity of irinotecan combined with polysaccharide-based nanoparticles for colorectal carcinoma. BIOMATERIALS ADVANCES 2023; 153:213577. [PMID: 37572599 DOI: 10.1016/j.bioadv.2023.213577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
Functional polymeric nanoparticles (NPs) with antitumor potential were combined with the topoisomerase I inhibitor, irinotecan (IRT), to enhance cytotoxicity against colorectal cancers. The negatively charged γ-polyglutamic acid (γ-PGA) or fucoidan (FCD) was complexed with the positively charged chitosan (CS) to encapsulate IRT. The size of the γ-PGA/CS/IRT NPs and FCD/CS/IRT NPs were 146.0 ± 8.0 nm and 230.8 ± 2.5 nm, respectively, with polydispersity index ≤0.3. The cellular uptake ability of FCD/CS-FITC NPs was better than that of γ-PGA/CS-FITC NPs, especially in p-selectin positive HCT116 colorectal cancer cells (4.8 ± 0.8 μg/mL vs 11.4 ± 2.2 μg/mL). The IC50 of FCD/CS/IRT NPs was 2.4 times lower than that of γ-PGA/CS/IRT NPs in HCT116 cells (4.8 ± 0.8 μg/mL vs 11.4 ± 2.2 μg/mL), indicating its superior antitumor potential. The combination of irinotecan and fucoidan-based NPs exhibited a synergistic effect (CI <1), resulting in better anticancer activity of FCD/CS/IRT NPs than irinotecan alone. The apoptosis-related proteins, caspase 3, caspase 9, and poly(ADP-ribose) polymerase (PARP), were prominently increased in FCD/CS/IRT NPs-treated HCT116 cells by 2.3 folds, 3.5 folds, and 6.3 folds, respectively. All results support that fucoidan-based irinotecan-loaded nanoparticles possess the ability to effectively enhance cellular uptake and induce synergistic apoptosis of colorectal cancer cells.
Collapse
Affiliation(s)
- Fang-Ting Pai
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan
| | - Wen Jen Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan; Drug Research Center, College of Medicine, National Taiwan University, Taipei 10050, Taiwan.
| |
Collapse
|
9
|
Avelar RA, Armstrong AJ, Carvette G, Gupta R, Puleo N, Colina JA, Joseph P, Sobeck AM, O'Connor CM, Raines B, Gandhi A, Dziubinski ML, Ma DS, Resnick K, Singh S, Zanotti K, Nagel C, Waggoner S, Thomas DG, Skala SL, Zhang J, Narla G, DiFeo A. Small-Molecule-Mediated Stabilization of PP2A Modulates the Homologous Recombination Pathway and Potentiates DNA Damage-Induced Cell Death. Mol Cancer Ther 2023; 22:599-615. [PMID: 36788429 PMCID: PMC10157366 DOI: 10.1158/1535-7163.mct-21-0880] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/17/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
High-grade serous carcinoma (HGSC) is the most common and lethal ovarian cancer subtype. PARP inhibitors (PARPi) have become the mainstay of HGSC-targeted therapy, given that these tumors are driven by a high degree of genomic instability (GI) and homologous recombination (HR) defects. Nonetheless, approximately 30% of patients initially respond to treatment, ultimately relapsing with resistant disease. Thus, despite recent advances in drug development and an increased understanding of genetic alterations driving HGSC progression, mortality has not declined, highlighting the need for novel therapies. Using a small-molecule activator of protein phosphatase 2A (PP2A; SMAP-061), we investigated the mechanism by which PP2A stabilization induces apoptosis in patient-derived HGSC cells and xenograft (PDX) models alone or in combination with PARPi. We uncovered that PP2A genes essential for cellular transformation (B56α, B56γ, and PR72) and basal phosphatase activity (PP2A-A and -C) are heterozygously lost in the majority of HGSC. Moreover, loss of these PP2A genes correlates with worse overall patient survival. We show that SMAP-061-induced stabilization of PP2A inhibits the HR output by targeting RAD51, leading to chronic accumulation of DNA damage and ultimately apoptosis. Furthermore, combination of SMAP-061 and PARPi leads to enhanced apoptosis in both HR-proficient and HR-deficient HGSC cells and PDX models. Our studies identify PP2A as a novel regulator of HR and indicate PP2A modulators as a therapeutic therapy for HGSC. In summary, our findings further emphasize the potential of PP2A modulators to overcome PARPi insensitivity, given that targeting RAD51 presents benefits in overcoming PARPi resistance driven by BRCA1/2 mutation reversions.
Collapse
Affiliation(s)
- Rita A. Avelar
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | | | - Gracie Carvette
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Riya Gupta
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Noah Puleo
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Jose A. Colina
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Peronne Joseph
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Alexander M. Sobeck
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Caitlin M. O'Connor
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Internal Medicine, Genetic Medicine, University of Michigan, Ann Arbor, Michigan
| | - Brynne Raines
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Internal Medicine, Genetic Medicine, University of Michigan, Ann Arbor, Michigan
| | - Agharnan Gandhi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Michele L. Dziubinski
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Daniel S. Ma
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | | | | | | | | | | | - Daffyd G. Thomas
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | | | - Junran Zhang
- Department of Radiation Oncology, Ohio State University, Columbus, Ohio
| | - Goutham Narla
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Internal Medicine, Genetic Medicine, University of Michigan, Ann Arbor, Michigan
| | - Analisa DiFeo
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
- The Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
10
|
Piccinelli S, Romee R, Shapiro RM. The natural killer cell immunotherapy platform: an overview of the landscape of clinical trials in liquid and solid tumors. Semin Hematol 2023; 60:42-51. [PMID: 37080710 DOI: 10.1053/j.seminhematol.2023.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/23/2023] [Indexed: 03/07/2023]
Abstract
The translation of natural killer (NK) cells to the treatment of malignant disease has made significant progress in the last few decades. With a variety of available sources and improvements in both in vitro and in vivo NK cell expansion, the NK cell immunotherapy platform has come into its own. The enormous effort continues to further optimize this platform, including ways to enhance NK cell persistence, trafficking to the tumor microenvironment, and cytotoxicity. As this effort bears fruit, it is translated into a plethora of clinical trials in patients with advanced malignancies. The adoptive transfer of NK cells, either as a standalone therapy or in combination with other immunotherapies, has been applied for the treatment of both liquid and solid tumors, with numerous early-phase trials showing promising results. This review aims to summarize the key advantages of NK cell immunotherapy, highlight several of the current approaches being taken for its optimization, and give an overview of the landscape of clinical trials translating this platform into clinic.
Collapse
|
11
|
Lau CH, Seow KM, Chen KH. The Molecular Mechanisms of Actions, Effects, and Clinical Implications of PARP Inhibitors in Epithelial Ovarian Cancers: A Systematic Review. Int J Mol Sci 2022; 23:8125. [PMID: 35897700 PMCID: PMC9332395 DOI: 10.3390/ijms23158125] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy in the United States. Some patients affected by ovarian cancers often present genome instability with one or more of the defects in DNA repair pathways, particularly in homologous recombination (HR), which is strictly linked to mutations in breast cancer susceptibility gene 1 (BRCA 1) or breast cancer susceptibility gene 2 (BRCA 2). The treatment of ovarian cancer remains a challenge, and the majority of patients with advanced-stage ovarian cancers experience relapse and require additional treatment despite initial therapy, including optimal cytoreductive surgery (CRS) and platinum-based chemotherapy. Targeted therapy at DNA repair genes has become a unique strategy to combat homologous recombination-deficient (HRD) cancers in recent years. Poly (ADP-ribose) polymerase (PARP), a family of proteins, plays an important role in DNA damage repair, genome stability, and apoptosis of cancer cells, especially in HRD cancers. PARP inhibitors (PARPi) have been reported to be highly effective and low-toxicity drugs that will tremendously benefit patients with HRD (i.e., BRCA 1/2 mutated) epithelial ovarian cancer (EOC) by blocking the DNA repair pathways and inducing apoptosis of cancer cells. PARP inhibitors compete with NAD+ at the catalytic domain (CAT) of PARP to block PARP catalytic activity and the formation of PAR polymers. These effects compromise the cellular ability to overcome DNA SSB damage. The process of HR, an essential error-free pathway to repair DNA DSBs during cell replication, will be blocked in the condition of BRCA 1/2 mutations. The PARP-associated HR pathway can also be partially interrupted by using PARP inhibitors. Grossly, PARP inhibitors have demonstrated some therapeutic benefits in many randomized phase II and III trials when combined with the standard CRS for advanced EOCs. However, similar to other chemotherapy agents, PARP inhibitors have different clinical indications and toxicity profiles and also face drug resistance, which has become a major challenge. In high-grade epithelial ovarian cancers, the cancer cells under hypoxia- or drug-induced stress have the capacity to become polyploidy giant cancer cells (PGCCs), which can survive the attack of chemotherapeutic agents and start endoreplication. These stem-like, self-renewing PGCCs generate mutations to alter the expression/function of kinases, p53, and stem cell markers, and diploid daughter cells can exhibit drug resistance and facilitate tumor growth and metastasis. In this review, we discuss the underlying molecular mechanisms of PARP inhibitors and the results from the clinical studies that investigated the effects of the FDA-approved PARP inhibitors olaparib, rucaparib, and niraparib. We also review the current research progress on PARP inhibitors, their safety, and their combined usage with antiangiogenic agents. Nevertheless, many unknown aspects of PARP inhibitors, including detailed mechanisms of actions, along with the effectiveness and safety of the treatment of EOCs, warrant further investigation.
Collapse
Affiliation(s)
- Chien-Hui Lau
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei 231, Taiwan;
| | - Kok-Min Seow
- Department of Obstetrics and Gynecology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan;
- Department of Obstetrics and Gynecology, National Yang-Ming Chiao-Tung University, Taipei 112, Taiwan
| | - Kuo-Hu Chen
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei 231, Taiwan;
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
| |
Collapse
|
12
|
González-Martín A, Matulonis UA, Korach J, Mirza MR, Moore KN, Wu X, York W, Gupta D, Lechpammer S, Monk BJ. Niraparib treatment for patients with BRCA-mutated ovarian cancer: review of clinical data and therapeutic context. Future Oncol 2022; 18:2505-2536. [PMID: 35791804 DOI: 10.2217/fon-2022-0206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We reviewed clinical data for niraparib monotherapy in BRCA-mutated (BRCAm) epithelial ovarian cancer (OC), contextualizing results with data from other poly(ADP-ribose) polymerase inhibitors (PARPis). Niraparib reduced the likelihood of progression or death by 60% as first-line maintenance therapy and by 73-78% in recurrent disease. In heavily pretreated OC, efficacy was greater in the BRCAm versus non-BRCAm cohort. Quality-of-life (QoL) was maintained throughout treatment. Adverse events were consistent with the known niraparib safety profile. Cumulative efficacy, safety and QoL evidence demonstrate niraparib maintenance monotherapy has a positive benefit:risk ratio in BRCAm OC. Niraparib significantly improved progression-free survival as first-line maintenance therapy in all patients with OC (i.e., of any biomarker status).
Collapse
Affiliation(s)
- Antonio González-Martín
- Grupo Español de Investigación en Cáncer de Ovario (GEICO) and Medical Oncology Department, Clínica Universidad de Navarra, Madrid, Spain & Program in Solid Tumors, Center for Applied Medical Research (CIMA), Madrid, 31008, Spain
| | - Ursula A Matulonis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jacob Korach
- Gynecologic Oncology Department, Chaim Sheba Medical Center, Tel-Hashomer, Sackler School of Medicine, Tel Aviv University, 69978, Israel
| | - Mansoor R Mirza
- Department of Oncology, Rigshospitalet Copenhagen University Hospital, Copenhagen, 2100, Denmark
| | - Kathleen N Moore
- Department of Gynecologic Oncology, Stephenson Cancer Center at the University of Oklahoma Health Science Center, Oklahoma City, OK 73104 & Sarah Cannon Research Institute, Nashville, TN 37203, USA
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Whitney York
- GlaxoSmithKline, Upper Providence, PA 19426, USA
| | | | | | - Bradley J Monk
- HonorHealth Research Institute & Department of Obstetrics and Gynecology, University of Arizona, Creighton University, Phoenix, AZ 85258, USA
| |
Collapse
|
13
|
Hu X, Li D, Fu Y, Zheng J, Feng Z, Cai J, Wang P. Advances in the Application of Radionuclide-Labeled HER2 Affibody for the Diagnosis and Treatment of Ovarian Cancer. Front Oncol 2022; 12:917439. [PMID: 35785201 PMCID: PMC9240272 DOI: 10.3389/fonc.2022.917439] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/20/2022] [Indexed: 12/19/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is a highly expressed tumor marker in epithelial ovarian cancer, and its overexpression is considered to be a potential factor of poor prognosis. Therefore, monitoring the expression of HER2 receptor in tumor tissue provides favorable conditions for accurate localization, diagnosis, targeted therapy, and prognosis evaluation of cancer foci. Affibody has the advantages of high affinity, small molecular weight, and stable biochemical properties. The molecular probes of radionuclide-labeled HER2 affibody have recently shown broad application prospects in the diagnosis and treatment of ovarian cancer; the aim is to introduce radionuclides into the cancer foci, display systemic lesions, and kill tumor cells through the radioactivity of the radionuclides. This process seamlessly integrates the diagnosis and treatment of ovarian cancer. Current research and development of new molecular probes of radionuclide-labeled HER2 affibody should focus on overcoming the deficiencies of non-specific uptake in the kidney, bone marrow, liver, and gastrointestinal tract, and on reducing the background of the image to improve image quality. By modifying the amino acid sequence; changing the hydrophilicity, surface charge, and lipid solubility of the affibody molecule; and using different radionuclides, chelating agents, and labeling conditions to optimize the labeling method of molecular probes, the specific uptake of molecular probes at tumor sites will be improved, while reducing radioactive retention in non-target organs and obtaining the best target/non-target value. These measures will enable the clinical use of radionuclide-labeled HER2 affibody molecular probes as soon as possible, providing a new clinical path for tumor-specific diagnosis, targeted therapy, and efficacy evaluation. The purpose of this review is to describe the application of radionuclide-labeled HER2 affibody in the imaging and treatment of ovarian cancer, including its potential clinical value and dilemmas.
Collapse
Affiliation(s)
- Xianwen Hu
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dandan Li
- Department of Obstetrics, Zunyi Hospital of Traditional Chinese Medicine, Zunyi, China
| | - Yujie Fu
- Research and Development Department, Jiangsu Yuanben Biotechnology Co., Ltd., Zunyi, China
| | - Jiashen Zheng
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zelong Feng
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiong Cai
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Jiong Cai, ; Pan Wang,
| | - Pan Wang
- Department of Nuclear Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Jiong Cai, ; Pan Wang,
| |
Collapse
|
14
|
Lu Z, Mao W, Yang H, Santiago-O'Farrill JM, Rask PJ, Mondal J, Chen H, Ivan C, Liu X, Liu CG, Xi Y, Masuda K, Carrami EM, Chen M, Tang Y, Pang L, Lakomy DS, Calin GA, Liang H, Ahmed AA, Vankayalapati H, Bast RC. SIK2 inhibition enhances PARP inhibitor activity synergistically in ovarian and triple-negative breast cancers. J Clin Invest 2022; 132:146471. [PMID: 35642638 PMCID: PMC9151707 DOI: 10.1172/jci146471] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/19/2022] [Indexed: 12/21/2022] Open
Abstract
Poly(ADP-ribose) polymerase inhibitors (PARP inhibitors) have had an increasing role in the treatment of ovarian and breast cancers. PARP inhibitors are selectively active in cells with homologous recombination DNA repair deficiency caused by mutations in BRCA1/2 and other DNA repair pathway genes. Cancers with homologous recombination DNA repair proficiency respond poorly to PARP inhibitors. Cancers that initially respond to PARP inhibitors eventually develop drug resistance. We have identified salt-inducible kinase 2 (SIK2) inhibitors, ARN3236 and ARN3261, which decreased DNA double-strand break (DSB) repair functions and produced synthetic lethality with multiple PARP inhibitors in both homologous recombination DNA repair deficiency and proficiency cancer cells. SIK2 is required for centrosome splitting and PI3K activation and regulates cancer cell proliferation, metastasis, and sensitivity to chemotherapy. Here, we showed that SIK2 inhibitors sensitized ovarian and triple-negative breast cancer (TNBC) cells and xenografts to PARP inhibitors. SIK2 inhibitors decreased PARP enzyme activity and phosphorylation of class-IIa histone deacetylases (HDAC4/5/7). Furthermore, SIK2 inhibitors abolished class-IIa HDAC4/5/7-associated transcriptional activity of myocyte enhancer factor-2D (MEF2D), decreasing MEF2D binding to regulatory regions with high chromatin accessibility in FANCD2, EXO1, and XRCC4 genes, resulting in repression of their functions in the DNA DSB repair pathway. The combination of PARP inhibitors and SIK2 inhibitors provides a therapeutic strategy to enhance PARP inhibitor sensitivity for ovarian cancer and TNBC.
Collapse
Affiliation(s)
- Zhen Lu
- Department of Experimental Therapeutics
| | | | | | | | | | | | - Hu Chen
- Department of Bioinformatics & Computational Biology, and
| | - Cristina Ivan
- Department of Experimental Therapeutics.,Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Yuanxin Xi
- Department of Bioinformatics & Computational Biology, and
| | - Kenta Masuda
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA.,Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, United Kingdom
| | - Eli M Carrami
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA.,Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, United Kingdom
| | - Meng Chen
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yitao Tang
- Department of Bioinformatics & Computational Biology, and.,The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Lan Pang
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - George A Calin
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Han Liang
- Department of Bioinformatics & Computational Biology, and.,Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ahmed A Ahmed
- Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Headington, Oxford, United Kingdom.,Nuffield Department of Women's & Reproductive Health, University of Oxford, Women's Centre, John Radcliffe Hospital, Oxford, United Kingdom.,Oxford NIHR Biomedical Research Centre, Oxford, United Kingdom
| | | | | |
Collapse
|
15
|
Van der Merwe NC, Combrink HM, Ntaita KS, Oosthuizen J. Prevalence of Clinically Relevant Germline BRCA Variants in a Large Unselected South African Breast and Ovarian Cancer Cohort: A Public Sector Experience. Front Genet 2022; 13:834265. [PMID: 35464868 PMCID: PMC9024354 DOI: 10.3389/fgene.2022.834265] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/23/2022] [Indexed: 01/14/2023] Open
Abstract
Breast cancer is a multifaceted disease that currently represents a leading cause of death in women worldwide. Over the past two decades (1998–2020), the National Health Laboratory Service’s Human Genetics Laboratory in central South Africa screened more than 2,974 breast and/or ovarian cancer patients for abnormalities characteristic of the widely known familial breast cancer genes, Breast Cancer gene 1 (BRCA1) and Breast Cancer gene 2 (BRCA2). Patients were stratified according to the presence of family history, age at onset, stage of the disease, ethnicity and mutation status relative to BRCA1/2. Collectively, 481 actionable (likely-to pathogenic) variants were detected in this cohort among the different ethnic/racial groups. A combination of old (pre-2014) and new (post-2014) laboratory techniques was used to identify these variants. Additionally, targeted genotyping was performed as translational research revealed the first three recurrent South African pathogenic variants, namely BRCA1 c.1374del (legacy name 1493delC), BRCA1 c.2641G>T (legacy name E881X) and BRCA2 c.7934del (legacy name 8162delG). This initial flagship study resulted in a cost-effective diagnostic test that enabled screening of a particular ethnic group for these variants. Since then, various non-Afrikaner frequent variants were identified that were proven to represent recurrent variants. These include BRCA2 c.5771_5774del (legacy name 5999del4) and BRCA2 c.582G>A, both Black African founder mutations. By performing innovative translational research, medical science in South Africa can adopt first-world technologies into its healthcare context as a developing country. Over the past two decades, the progress made in the public sector enabled a pivotal shift away from population-directed genetic testing to the screening of potentially all breast and ovarian cancer patients, irrespective of ethnicity, family history or immunohistochemical status. The modifications over the years complied with international standards and guidelines aimed at universal healthcare for all. This article shares all the cohort stratifications and the likely-to pathogenic variants detected.
Collapse
Affiliation(s)
- Nerina C. Van der Merwe
- Division of Human Genetics, National Health Laboratory Service, Bloemfontein, South Africa
- Division of Human Genetics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- *Correspondence: Nerina C. Van der Merwe,
| | - Herkulaas MvE Combrink
- Economic and Management Sciences, University of the Free State, Bloemfontein, South Africa
- Interdisciplinary Centre for Digital Futures, University of the Free State, Bloemfontein, South Africa
| | - Kholiwe S. Ntaita
- Division of Human Genetics, National Health Laboratory Service, Bloemfontein, South Africa
- Division of Human Genetics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Jaco Oosthuizen
- Division of Human Genetics, National Health Laboratory Service, Bloemfontein, South Africa
- Division of Human Genetics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
16
|
Yamamoto H, Hirasawa A. Homologous Recombination Deficiencies and Hereditary Tumors. Int J Mol Sci 2021; 23:348. [PMID: 35008774 PMCID: PMC8745585 DOI: 10.3390/ijms23010348] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 12/16/2022] Open
Abstract
Homologous recombination (HR) is a vital process for repairing DNA double-strand breaks. Germline variants in the HR pathway, comprising at least 10 genes, such as BRCA1, BRCA2, ATM, BARD1, BRIP1, CHEK2, NBS1(NBN), PALB2, RAD51C, and RAD51D, lead to inherited susceptibility to specific types of cancers, including those of the breast, ovaries, prostate, and pancreas. The penetrance of germline pathogenic variants of each gene varies, whereas all their associated protein products are indispensable for maintaining a high-fidelity DNA repair system by HR. The present review summarizes the basic molecular mechanisms and components that collectively play a role in maintaining genomic integrity against DNA double-strand damage and their clinical implications on each type of hereditary tumor.
Collapse
Affiliation(s)
- Hideki Yamamoto
- Department of Clinical Genomic Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan;
| | | |
Collapse
|
17
|
Laforgia M, Laface C, Calabrò C, Ferraiuolo S, Ungaro V, Tricarico D, Gadaleta CD, Nardulli P, Ranieri G. Peripheral Neuropathy under Oncologic Therapies: A Literature Review on Pathogenetic Mechanisms. Int J Mol Sci 2021; 22:1980. [PMID: 33671327 PMCID: PMC7922628 DOI: 10.3390/ijms22041980] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023] Open
Abstract
Peripheral neurologic complications are frequent adverse events during oncologic treatments and often lead to dose reduction, administration delays with time elongation of the therapeutic plan and, not least, worsening of patients' quality of life. Experience skills are required to recognize symptoms and clinical evidences and the collaboration between different health professionals, in particular oncologists and hospital pharmacists, grants a correct management of this undesirable occurrence. Some classes of drugs (platinates, vinca alkaloids, taxanes) typically develop this kind of side effect, but the genesis of chemotherapy-induced peripheral neuropathy is not linked to a single mechanism. This paper aims from one side at summarizing and explaining all the scattering mechanisms of chemotherapy-induced peripheral neuropathy through a detailed literature revision, on the other side at finding new approaches to possible treatments, in order to facilitate the collaboration between oncologists, hematologists and hospital pharmacists.
Collapse
Affiliation(s)
- Mariarita Laforgia
- Pharmacy Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (M.L.); (C.C.); (S.F.); (V.U.); (P.N.)
| | - Carmelo Laface
- Interventional and Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco65, 70124 Bari, Italy; (C.L.); (C.D.G.)
- Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, 70121 Bari, Italy
| | - Concetta Calabrò
- Pharmacy Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (M.L.); (C.C.); (S.F.); (V.U.); (P.N.)
| | - Simona Ferraiuolo
- Pharmacy Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (M.L.); (C.C.); (S.F.); (V.U.); (P.N.)
| | - Valentina Ungaro
- Pharmacy Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (M.L.); (C.C.); (S.F.); (V.U.); (P.N.)
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via Orabona 4, 70125 Bari, Italy;
| | - Cosmo Damiano Gadaleta
- Interventional and Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco65, 70124 Bari, Italy; (C.L.); (C.D.G.)
| | - Patrizia Nardulli
- Pharmacy Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (M.L.); (C.C.); (S.F.); (V.U.); (P.N.)
| | - Girolamo Ranieri
- Interventional and Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco65, 70124 Bari, Italy; (C.L.); (C.D.G.)
| |
Collapse
|
18
|
Tan J, Tao K, Zheng X, Liu D, Ma D, Gao Q. Expression of PAWR predicts prognosis of ovarian cancer. Cancer Cell Int 2020; 20:598. [PMID: 33317551 PMCID: PMC7737345 DOI: 10.1186/s12935-020-01704-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022] Open
Abstract
Background Ovarian cancer greatly threatens the general health of women worldwide. Implementation of predictive prognostic biomarkers aids in ovarian cancer management. Methods Using online databases, the general expression profile, target-disease associations, and interaction network of PAWR were explored. To identify the role of PAWR in ovarian cancer, gene correlation analysis, survival analysis, and combined analysis of drug responsiveness and PAWR expression were performed. The predictive prognostic value of PAWR was further validated in clinical samples. Results PAWR was widely expressed in normal and cancer tissues, with decreased expression in ovarian cancer tissues compared with normal tissues. PAWR was associated with various cancers including ovarian cancer. PAWR formed a regulatory network with a group of proteins and correlated with several genes, which were both implicated in ovarian cancer and drug responsiveness. High PAWR expression denoted better survival in ovarian cancer patients (OS: HR = 0.84, P = 0.0077; PFS, HR = 0.86, P = 0.049). Expression of PAWR could predict platinum responsiveness in ovarian cancer and there was a positive correlation between PAWR gene effect and paclitaxel sensitivity. In 12 paired clinical samples, the cancerous tissues exhibited significantly lower PAWR expression than matched normal fallopian tubes. The predictive prognostic value of PAWR was maintained in a cohort of 50 ovarian cancer patients. Conclusions High PAWR expression indicated better survival and higher drug responsiveness in ovarian cancer patients. PAWR could be exploited as a predictive prognostic biomarker in ovarian cancer.
Collapse
Affiliation(s)
- Jiahong Tan
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, People's Republic of China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Kangjia Tao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, People's Republic of China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xu Zheng
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, People's Republic of China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Dan Liu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, People's Republic of China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Ding Ma
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, People's Republic of China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Qinglei Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, People's Republic of China. .,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|