1
|
Jiang W, Jin WL, Xu AM. Cholesterol metabolism in tumor microenvironment: cancer hallmarks and therapeutic opportunities. Int J Biol Sci 2024; 20:2044-2071. [PMID: 38617549 PMCID: PMC11008265 DOI: 10.7150/ijbs.92274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/27/2024] [Indexed: 04/16/2024] Open
Abstract
Cholesterol is crucial for cell survival and growth, and dysregulation of cholesterol homeostasis has been linked to the development of cancer. The tumor microenvironment (TME) facilitates tumor cell survival and growth, and crosstalk between cholesterol metabolism and the TME contributes to tumorigenesis and tumor progression. Targeting cholesterol metabolism has demonstrated significant antitumor effects in preclinical and clinical studies. In this review, we discuss the regulatory mechanisms of cholesterol homeostasis and the impact of its dysregulation on the hallmarks of cancer. We also describe how cholesterol metabolism reprograms the TME across seven specialized microenvironments. Furthermore, we discuss the potential of targeting cholesterol metabolism as a therapeutic strategy for tumors. This approach not only exerts antitumor effects in monotherapy and combination therapy but also mitigates the adverse effects associated with conventional tumor therapy. Finally, we outline the unresolved questions and suggest potential avenues for future investigations on cholesterol metabolism in relation to cancer.
Collapse
Affiliation(s)
- Wen Jiang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - A-Man Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
- Anhui Public Health Clinical Center, Hefei 230022, P. R. China
| |
Collapse
|
2
|
Xing Z, Jiang X, Wu Y, Yu Z. Targeted Mevalonate Pathway and Autophagy in Antitumor Immunotherapy. Curr Cancer Drug Targets 2024; 24:890-909. [PMID: 38275055 DOI: 10.2174/0115680096273730231206054104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 01/27/2024]
Abstract
Tumors of the digestive system are currently one of the leading causes of cancer-related death worldwide. Despite considerable progress in tumor immunotherapy, the prognosis for most patients remains poor. In the tumor microenvironment (TME), tumor cells attain immune escape through immune editing and acquire immune tolerance. The mevalonate pathway and autophagy play important roles in cancer biology, antitumor immunity, and regulation of the TME. In addition, there is metabolic crosstalk between the two pathways. However, their role in promoting immune tolerance in digestive system tumors has not previously been summarized. Therefore, this review focuses on the cancer biology of the mevalonate pathway and autophagy, the regulation of the TME, metabolic crosstalk between the pathways, and the evaluation of their efficacy as targeted inhibitors in clinical tumor immunotherapy.
Collapse
Affiliation(s)
- Zongrui Xing
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
| | - Xiangyan Jiang
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yuxia Wu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Zeyuan Yu
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, Gansu, China
| |
Collapse
|
3
|
Schelz Z, Muddather HF, Zupkó I. Repositioning of HMG-CoA Reductase Inhibitors as Adjuvants in the Modulation of Efflux Pump-Mediated Bacterial and Tumor Resistance. Antibiotics (Basel) 2023; 12:1468. [PMID: 37760764 PMCID: PMC10525194 DOI: 10.3390/antibiotics12091468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Efflux pump (EP)-mediated multidrug resistance (MDR) seems ubiquitous in bacterial infections and neoplastic diseases. The diversity and lack of specificity of these efflux mechanisms raise a great obstacle in developing drugs that modulate efflux pumps. Since developing novel chemotherapeutic drugs requires large investments, drug repurposing offers a new approach that can provide alternatives as adjuvants in treating resistant microbial infections and progressive cancerous diseases. Hydroxy-methyl-glutaryl coenzyme-A (HMG-CoA) reductase inhibitors, also known as statins, are promising agents in this respect. Originally, statins were used in the therapy of dyslipidemia and for the prevention of cardiovascular diseases; however, extensive research has recently been performed to elucidate the functions of statins in bacterial infections and cancers. The mevalonate pathway is essential in the posttranslational modification of proteins related to vital eukaryotic cell functions. In this article, a comparative review is given about the possible role of HMG-CoA reductase inhibitors in managing diseases of bacterial and neoplastic origin. Molecular research and clinical studies have proven the justification of statins in this field. Further well-designed clinical trials are urged to clarify the significance of the contribution of statins to the lower risk of disease progression in bacterial infections and cancerous diseases.
Collapse
Affiliation(s)
| | | | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, 6720 Szeged, Hungary; (Z.S.); (H.F.M.)
| |
Collapse
|
4
|
Leite M, Seruca R, Gonçalves JM. Drug Repurposing in Gastric Cancer: Current Status and Future Perspectives. HEREDITARY GASTRIC AND BREAST CANCER SYNDROME 2023:281-320. [DOI: 10.1007/978-3-031-21317-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Araújo D, Ribeiro E, Amorim I, Vale N. Repurposed Drugs in Gastric Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010319. [PMID: 36615513 PMCID: PMC9822219 DOI: 10.3390/molecules28010319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
Gastric cancer (GC) is one of the major causes of death worldwide, ranking as the fifth most incident cancer in 2020 and the fourth leading cause of cancer mortality. The majority of GC patients are in an advanced stage at the time of diagnosis, presenting a poor prognosis and outcome. Current GC treatment approaches involve endoscopic detection, gastrectomy and chemotherapy or chemoradiotherapy in an adjuvant or neoadjuvant setting. Drug development approaches demand extreme effort to identify molecular mechanisms of action of new drug candidates. Drug repurposing is based on the research of new therapeutic indications of drugs approved for other pathologies. In this review, we explore GC and the different drugs repurposed for this disease.
Collapse
Affiliation(s)
- Diana Araújo
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Eduarda Ribeiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Irina Amorim
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
6
|
Cui MY, Yi X, Zhu DX, Wu J. The Role of Lipid Metabolism in Gastric Cancer. Front Oncol 2022; 12:916661. [PMID: 35785165 PMCID: PMC9240397 DOI: 10.3389/fonc.2022.916661] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
Gastric cancer has been one of the most common cancers worldwide with extensive metastasis and high mortality. Chemotherapy has been found as a main treatment for metastatic gastric cancer, whereas drug resistance limits the effectiveness of chemotherapy and leads to treatment failure. Chemotherapy resistance in gastric cancer has a complex and multifactorial mechanism, among which lipid metabolism plays a vital role. Increased synthesis of new lipids or uptake of exogenous lipids can facilitate the rapid growth of cancer cells and tumor formation. Lipids form the structural basis of biofilms while serving as signal molecules and energy sources. It is noteworthy that lipid metabolism is capable of inducing drug resistance in gastric cancer cells by reshaping the tumor micro-environment. In this study, new mechanisms of lipid metabolism in gastric cancer and the metabolic pathways correlated with chemotherapy resistance are reviewed. In particular, we discuss the effects of lipid metabolism on autophagy, biomarkers treatment and drug resistance in gastric cancer from the perspective of lipid metabolism. In brief, new insights can be gained into the development of promising therapies through an in-depth investigation of the mechanism of lipid metabolism reprogramming and resensitization to chemotherapy in gastric cancer cells, and scientific treatment can be provided by applying lipid-key enzyme inhibitors as cancer chemical sensitizers in clinical settings.
Collapse
Affiliation(s)
| | | | | | - Jun Wu
- *Correspondence: Jun Wu, ; Dan-Xia Zhu,
| |
Collapse
|
7
|
Romo-Perez A, Dominguez-Gomez G, Chavez-Blanco A, Taja-Chayeb L, Gonzalez-Fierro A, Diaz-Romero C, Lopez-Basave HN, Duenas-Gonzalez A. Progress in Metabolic Studies of Gastric Cancer and Therapeutic Implications. Curr Cancer Drug Targets 2022; 22:703-716. [DOI: 10.2174/1568009622666220413083534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/10/2021] [Accepted: 02/03/2022] [Indexed: 12/09/2022]
Abstract
Background:
Worldwide, gastric cancer is ranked the fifth malignancy in incidence and the third malignancy in mortality. Gastric cancer causes an altered metabolism that can be therapeutically exploited.
Objective:
To provide an overview of the significant metabolic alterations caused by gastric cancer and propose a blockade.
Methods:
A comprehensive and up-to-date review of descriptive and experimental publications on the metabolic alterations caused by gastric cancer and their blockade. This is not a systematic review.
Results:
Gastric cancer causes high rates of glycolysis and glutaminolysis. There are increased rates of de novo fatty acid synthesis and cholesterol synthesis. Moreover, gastric cancer causes high rates of lipid turnover via fatty acid -oxidation. Preclinical data indicate that the individual blockade of these pathways via enzyme targeting leads to
antitumor effects in vitro and in vivo. Nevertheless, there is no data on the simultaneous blockade of these five pathways, which is critical, as tumors show metabolic flexibility in response to the availability of nutrients. This means tumors may activate alternate routes when one or more are inhibited. We hypothesize there is a need to simultaneously blockade them to avoid or decrease the metabolic flexibility that may lead to treatment resistance.
Conclusions:
There is a need to explore the preclinical efficacy and feasibility of combined metabolic therapy targeting the pathways of glucose, glutamine, fatty acid synthesis, cholesterol synthesis, and fatty acid oxidation. This may have therapeutical implications because we have clinically available drugs that target these pathways in gastric cancer.
Collapse
Affiliation(s)
- Adriana Romo-Perez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Alma Chavez-Blanco
- Division of Basic Research, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Lucia Taja-Chayeb
- Division of Basic Research, Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | | | | | - Alfonso Duenas-Gonzalez
- Instituto Nacional de Cancerología, Mexico City, Mexico
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
8
|
Cui MY, Yi X, Zhu DX, Wu J. Aberrant lipid metabolism reprogramming and immune microenvironment for gastric cancer: a literature review. Transl Cancer Res 2022; 10:3829-3842. [PMID: 35116681 PMCID: PMC8797372 DOI: 10.21037/tcr-21-655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/05/2021] [Indexed: 12/15/2022]
Abstract
Objective We summarize the aberrant lipid metabolism disorders associated with enzyme activity and expression changes and related immune microenvironment for gastric cancer. Background Gastric cancer is a malignant tumor of the primary digestive system with high incidence, poor prognosis characterized by extensive metastasis and poor effect with radiotherapy and chemotherapy. One of the most important metabolic characteristics of cancer cells is lipid metabolism reprogramming to adapt to the tumor micro-environment. Methods The focus of research in recent years has also been on lipid metabolism disorders, particularly aberrant metabolism of fatty acids (FAs) in gastric cancer cells, as well as an upregulation of the expression and activity of key enzymes in lipid metabolism. These changes remind us of the occurrence and development of gastric cancer. These metabolic changes are not unique to cancer cells. Changes in metabolic procedures also determine the function and viability of immune cells. In the immune microenvironment of gastric cancer, the metabolic competition and interaction between cancer cells and immune cells are not very clear, while a deeper understanding of the topic is critical to targeting the differential metabolic requirements of them that comprise an immune response to cancer offers an opportunity to selectively regulate immune cell function. Conclusions Recent research suggests that targeting metabolism is an emerging and potentially promising treatment strategy for gastric cancer patients. We need to explore it further.
Collapse
Affiliation(s)
- Meng-Ying Cui
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xing Yi
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Dan-Xia Zhu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jun Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
9
|
Romo-Perez A, Dominguez-Gomez G, Chavez-Blanco A, Taja-Chayeb L, Gonzalez-Fierro A, Martinez EG, Correa-Basurto J, Duenas-Gonzalez A. BAPST. A Combo of Common use drugs as metabolic therapy of cancer-a theoretical proposal. Curr Mol Pharmacol 2021; 15:815-831. [PMID: 34620071 DOI: 10.2174/1874467214666211006123728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022]
Abstract
Advances in cancer therapy have yet to impact worldwide cancer mortality. Poor cancer drug affordability is one of the factors limiting mortality burden strikes. Up to now, cancer drug repurposing had no meet expectations concerning drug affordability. The three FDA-approved cancer drugs developed under repurposing -all-trans-retinoic acid, arsenic trioxide, and thalidomide- do not differ in price from other drugs developed under the classical model. Though additional factors affect the whole process from inception to commercialization, the repurposing of widely used, commercially available, and cheap drugs may help. This work reviews the concept of the malignant metabolic phenotype and its exploitation by simultaneously blocking key metabolic processes altered in cancer. We elaborate on a combination called BAPST, which stands for the following drugs and pathways they inhibit: Benserazide (glycolysis), Apomorphine (glutaminolysis), Pantoprazole (Fatty-acid synthesis), Simvastatin (mevalonate pathway), and Trimetazidine (Fatty-acid oxidation). Their respective primary indications are: • Parkinson's disease (benserazide and apomorphine). • Peptic ulcer disease (pantoprazole). • Hypercholesterolemia (simvastatin). • Ischemic heart disease (trimetazidine). When used for their primary indication, the literature review on each of these drugs shows they have a good safety profile and lack predicted pharmacokinetic interaction among them. Most importantly, the inhibitory enzymatic concentrations required for inhibiting their cancer targets enzymes are below the plasma concentrations observed when these drugs are used for their primary indication. Based on that, we propose that the regimen BAPTS merits preclinical testing.
Collapse
Affiliation(s)
- Adriana Romo-Perez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City. Mexico
| | | | - Alma Chavez-Blanco
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City. Mexico
| | - Lucia Taja-Chayeb
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City. Mexico
| | - Aurora Gonzalez-Fierro
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Mexico City. Mexico
| | | | - Jose Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City. Mexico
| | - Alfonso Duenas-Gonzalez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City. Mexico
| |
Collapse
|
10
|
Jiang W, Hu JW, He XR, Jin WL, He XY. Statins: a repurposed drug to fight cancer. J Exp Clin Cancer Res 2021; 40:241. [PMID: 34303383 PMCID: PMC8306262 DOI: 10.1186/s13046-021-02041-2] [Citation(s) in RCA: 222] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
As competitive HMG-CoA reductase (HMGCR) inhibitors, statins not only reduce cholesterol and improve cardiovascular risk, but also exhibit pleiotropic effects that are independent of their lipid-lowering effects. Among them, the anti-cancer properties of statins have attracted much attention and indicated the potential of statins as repurposed drugs for the treatment of cancer. A large number of clinical and epidemiological studies have described the anticancer properties of statins, but the evidence for anticancer effectiveness of statins is inconsistent. It may be that certain molecular subtypes of cancer are more vulnerable to statin therapy than others. Whether statins have clinical anticancer effects is still an active area of research. Statins appear to enhance the efficacy and address the shortcomings associated with conventional cancer treatments, suggesting that statins should be considered in the context of combined therapies for cancer. Here, we present a comprehensive review of the potential of statins in anti-cancer treatments. We discuss the current understanding of the mechanisms underlying the anti-cancer properties of statins and their effects on different malignancies. We also provide recommendations for the design of future well-designed clinical trials of the anti-cancer efficacy of statins.
Collapse
Affiliation(s)
- Wen Jiang
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, P. R. China
| | - Jin-Wei Hu
- Department of General Surgery, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, P. R. China
| | - Xu-Ran He
- Department of Finance, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, P. R. China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Xin-Yang He
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, 230001, P. R. China.
| |
Collapse
|
11
|
Ortiz N, Delgado-Carazo JC, Díaz C. Importance of Mevalonate Pathway Lipids on the Growth and Survival of Primary and Metastatic Gastric Carcinoma Cells. Clin Exp Gastroenterol 2021; 14:217-228. [PMID: 34103960 PMCID: PMC8180305 DOI: 10.2147/ceg.s310235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Abstract
Purpose This preclinical study aims to determine the effect of drugs that alter isoprenoids and cholesterol metabolism in the homeostasis of gastric carcinoma cell lines in the search for new therapeutic targets for stomach cancer. Materials and Methods Primary (AGS) and metastatic (NCI-N87) gastric cancer cell lines were treated with simvastatin and terbinafine, two inhibitors of the mevalonate pathway, and avasimibe, an inhibitor of cholesterol esterification. Cell viability and growth were measured as well as cholesterol levels and the expression of the hydroxy methyl-glutaryl CoA reductase (HMGCR) and the LDL receptor (LDLR). Results Primary and metastatic gastric carcinoma cells show different sensitivity to drugs that affect isoprenoid synthesis and the metabolism and uptake of cholesterol. Isoprenoids are involved in the growth and viability of both types of cells, but the role of free and esterified cholesterol for metastatic gastric cell survival is not as evident as for primary gastric cancer cells. Differential expression of LDLR due to mevalonate pathway inhibition suggests variations in the regulation of cholesterol uptake between primary and metastatic cancer cells. Conclusion These results indicate that at least for primary gastric cancer, statins and avasimibe are promising candidates as potential novel antitumor drugs that target the metabolism of isoprenoids and cholesterol of gastric tumors.
Collapse
Affiliation(s)
- Natalia Ortiz
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica
| | | | - Cecilia Díaz
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José, Costa Rica.,Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|