1
|
Xie H, Zhu Z, Tang J, Zhu W, Zhu M, Yi Wai AW, Li J, Wu Z, Tam PKH, Lui VCH, Tang W. Dysregulated Activation of Hippo-YAP1 Signaling Induces Oxidative Stress and Aberrant Development of Intrahepatic Biliary Cells in Biliary Atresia. J Transl Med 2025; 105:102199. [PMID: 39579985 DOI: 10.1016/j.labinv.2024.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 10/30/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024] Open
Abstract
The canonical Hippo-YAP1 signaling pathway is crucial for liver development and regeneration, but its role in repair and regeneration of intrahepatic bile duct in biliary atresia (BA) remains largely unknown. YAP1 expression in the liver tissues of patients with BA and Rhesus rotavirus-induced experimental BA mouse models were examined using quantitative reverse transcriptase-PCR and double immunofluorescence. Mouse EpCAM-expressing cell-derived liver organoids were generated and treated with Hippo-YAP1 pathway activators (Xmu-mp-1 and TRULI) or an inhibitor (Peptide17). Morphologic, immunofluorescence, RNA-seq, and bioinformatic analyses were performed. Oxidative stress in human intrahepatic biliary epithelial cells transfected with a constitutively active YAP1 (YAPS127A) plasmid was assessed using quantitative reverse transcriptase-PCR and fluorescence-activated cell sorting analysis. PRDX1 expression in BA and experimental BA mouse model livers was examined by double immunofluorescence. The mRNA expression and nuclear localization of YAP1 in EpCAM-expressing bile duct cells were increased in the livers of BA and experimental BA mouse model. Aberrant development of intrahepatic organoids, differential expression of oxidative stress response genes Sod3 and Prdx1, enrichment of oxidative stress, and mitochondrial reactive oxidative stress-associated gene sets were observed in organoids treated with the Hippo-YAP1 activator, whereas organoid development was unaffected by the addition of the Hippo-YAP1 inhibitor. Transfection with constitutively active YAP1 led to the downregulation of PRDX1 and oxidative stress in human intrahepatic biliary epithelial cells. Additionally, reduced PRDX1 expression was also observed in the bile duct of human BA and experimental BA mouse livers. In conclusion, dysregulated activation of Hippo-YAP1 signaling induces oxidative stress and impairs the development of intrahepatic biliary organoids, which indicates therapeutic strategies targeting Hippo-YAP1 signaling may offer the potential to improve biliary repair and regeneration in patients with BA.
Collapse
Affiliation(s)
- Hua Xie
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongxian Zhu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jiaqi Tang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Wei Zhu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Mengyan Zhu
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Amy Wing Yi Wai
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Junzhi Li
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zhongluan Wu
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Paul Kwong Hang Tam
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China; Medical Sciences Division, Macau University of Science and Technology, Macau SAR, China
| | - Vincent Chi Hang Lui
- Department of Surgery, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China; Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China.
| | - Weibing Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Zhou L, Jian T, Wan Y, Huang R, Fang H, Wang Y, Liang C, Ding X, Chen J. Luteolin Alleviates Oxidative Stress in Chronic Obstructive Pulmonary Disease Induced by Cigarette Smoke via Modulation of the TRPV1 and CYP2A13/NRF2 Signaling Pathways. Int J Mol Sci 2023; 25:369. [PMID: 38203542 PMCID: PMC10779282 DOI: 10.3390/ijms25010369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The current study aims to investigate the therapeutic potential of luteolin (Lut), a naturally occurring flavonoid found in various medicinal plants, for treating chronic obstructive pulmonary disease (COPD) through both in vitro and in vivo studies. The results demonstrated that Lut increased body weight, reduced lung tissue swelling and lung damage indices, mitigated systemic oxidative stress levels, and decreased alveolar fusion in cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced COPD mice. Additionally, Lut was observed to downregulate the expression of the TRPV1 and CYP2A13 proteins while upregulating SIRT6 and NRF2 protein expression in CS + LPS-induced COPD mice and cigarette smoke extract (CSE)-treated A549 cells. The concentrations of total reactive oxygen species (ROS) and mitochondrial ROS in A549 cells induced by CSE significantly increased. Moreover, CSE caused a notable elevation of intracellular Ca2+ levels in A549 cells. Importantly, Lut exhibited inhibitory effects on the inward flow of Ca2+ and attenuated the overproduction of mitochondrial and intracellular ROS in A549 cells treated with CSE. In conclusion, Lut demonstrated a protective role in alleviating oxidative stress and inflammation in CS + LPS-induced COPD mice and CSE-treated A549 cells by regulating TRPV1/SIRT6 and CYP2A13/NRF2 signaling pathways.
Collapse
Affiliation(s)
- Lina Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (L.Z.); (T.J.); (C.L.)
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.W.); (R.H.); (H.F.); (Y.W.)
| | - Tunyu Jian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (L.Z.); (T.J.); (C.L.)
| | - Yan Wan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.W.); (R.H.); (H.F.); (Y.W.)
| | - Rizhong Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.W.); (R.H.); (H.F.); (Y.W.)
| | - Hailing Fang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.W.); (R.H.); (H.F.); (Y.W.)
| | - Yiwei Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.W.); (R.H.); (H.F.); (Y.W.)
| | - Chengyuan Liang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (L.Z.); (T.J.); (C.L.)
| | - Xiaoqin Ding
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (L.Z.); (T.J.); (C.L.)
| | - Jian Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China; (L.Z.); (T.J.); (C.L.)
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.W.); (R.H.); (H.F.); (Y.W.)
| |
Collapse
|
3
|
Zhang Z, Zhou P, Liu M, Pei B. Expression And Prognostic Role of PRDX1 In Gastrointestinal Cancers. J Cancer 2023; 14:2895-2907. [PMID: 37781072 PMCID: PMC10539570 DOI: 10.7150/jca.86568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/23/2023] [Indexed: 10/03/2023] Open
Abstract
Esophageal, gastric, liver, and colorectal cancers represent four prevalent gastrointestinal cancers that pose substantial threats to global health due to their high morbidity and mortality rates. Peroxiredoxin 1 (PRDX1), a significant component of the PRDXs family, primarily functions to counteract the peroxides produced by metabolic activities in the body, thereby maintaining the dynamic equilibrium of peroxides in vivo. Intriguingly, PRDX1 expression correlates strongly with cancer's onset, progression, and prognosis. This study mainly applied bioinformatics methods to analyze PRDX1's expression, diagnosis, and prognosis in gastrointestinal cancers and to summarize current research advancements. Evidence from the bioinformatics database suggested that the high expression of PRDX1 was a prominent characteristic of these four gastrointestinal cancers, with this observation reaching statistical significance. The high expression of PRDX1 in gastrointestinal cancer cells also confirms this result. Notably, the primary alteration in PRDX1 within these cancers is the presence of genetic mutations. PRDX1 demonstrated the highest diagnostic efficacy for colorectal cancer. Nevertheless, elevated PRDX1 levels only significantly diminished the survival time of liver cancer patients, exerting no statistically significant impact on the survival duration of patients afflicted by the other three types of gastrointestinal cancers. Recent research has indicated variability in PRDX1 expression across different cancer types, with high expression being predominantly observed in these four gastrointestinal cancers and, in most instances, unfavorable prognosis. These findings broadly align with the results derived from bioinformatics. This research underscores the high expression of PRDX1 in gastrointestinal cancers, its relevance to the diagnosis and prognosis monitoring of these cancers, and its potential to guide clinical treatment for these cancers.
Collapse
Affiliation(s)
- Zhou Zhang
- Department of Clinical Laboratory, Wuxi Huishan District People's Hospital, Wuxi, Jiangsu Province, 214000, China
| | - Pengli Zhou
- College of Basic Medicine, China Medical University, Shenyang, Liaoning province 110000, China
| | - Mingyue Liu
- Department of Ultrasound, Wuxi No.2 People's Hospital; Jiangnan University Medical Center, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu province 214002, China
| | - Bing Pei
- Department of Clinical Laboratory, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, Jiangsu, 223800, China
| |
Collapse
|
4
|
Freeman B, Mamallapalli J, Bian T, Ballas K, Lynch A, Scala A, Huo Z, Fredenburg KM, Bruijnzeel AW, Baglole CJ, Lu J, Salloum RG, Malaty J, Xing C. Opportunities and Challenges of Kava in Lung Cancer Prevention. Int J Mol Sci 2023; 24:ijms24119539. [PMID: 37298489 DOI: 10.3390/ijms24119539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths due to its high incidence, late diagnosis, and limited success in clinical treatment. Prevention therefore is critical to help improve lung cancer management. Although tobacco control and tobacco cessation are effective strategies for lung cancer prevention, the numbers of current and former smokers in the USA and globally are not expected to decrease significantly in the near future. Chemoprevention and interception are needed to help high-risk individuals reduce their lung cancer risk or delay lung cancer development. This article will review the epidemiological data, pre-clinical animal data, and limited clinical data that support the potential of kava in reducing human lung cancer risk via its holistic polypharmacological effects. To facilitate its future clinical translation, advanced knowledge is needed with respect to its mechanisms of action and the development of mechanism-based non-invasive biomarkers in addition to safety and efficacy in more clinically relevant animal models.
Collapse
Affiliation(s)
- Breanne Freeman
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Jessica Mamallapalli
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Tengfei Bian
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Kayleigh Ballas
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Allison Lynch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Alexander Scala
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Public Health & Health Professions, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kristianna M Fredenburg
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Adriaan W Bruijnzeel
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Carolyn J Baglole
- Department of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Junxuan Lu
- Department of Pharmacology, PennState Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Ramzi G Salloum
- Department of Health Outcome & Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - John Malaty
- Department of Community Health & Family Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Chengguo Xing
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
5
|
Lee KI, Han Y, Ryu JS, In SM, Kim JY, Park JS, Kim JS, Kim J, Youn J, Park SR. Tobacco Smoking Could Accentuate Epithelial-Mesenchymal Transition and Th2-Type Response in Patients With Chronic Rhinosinusitis With Nasal Polyps. Immune Netw 2022; 22:e35. [PMID: 36081523 PMCID: PMC9433194 DOI: 10.4110/in.2022.22.e35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 12/01/2022] Open
Abstract
Tobacco smoking (TS) has been known as one of the most potent risk factors for airway inflammatory diseases. However, there has been a paucity of information regarding the immunologic alteration mediated by TS in patients with chronic rhinosinusitis with nasal polyps (CRSwNP). To identify the effect of TS, we harvested human tissue samples (never smoker: n=41, current smoker: n=22, quitter: n=23) and analyzed the expression of epithelial-derived cytokines (EDCs) such as IL-25, IL-33, and thymic stromal lymphopoietin. The expressions of Th2 cytokines and total serum IgE showed a type-2 inflammatory alteration by TS. In addition, the epithelial marker E-cadherin and epithelial-mesenchymal transition (EMT)-associated markers (N-cadherin, α-SMA, and vimentin) were evaluated. Histological analysis showed that EDC expressions were upregulated in the current smoker group and downregulated in the quitter group. These expression patterns were consistent with mRNA and protein expression levels. We also found that the local Th2 cytokine expression and IgE class switching, as well as serum IgE levels, were elevated in the current smoker group and showed normal levels in the quitter group. Furthermore, the expressions of E-cadherin decreased while those of N-cadherin, α-SMA, and vimentin increased in the current smoker group compared those in the never smoker group. Taken together, these results indicate that TS contributes to the deterioration of pathogenesis by releasing local EDCs and Th2 cytokines, resulting in EMT in patients with CRSwNP. We verified that alterations of immunological response by TS in sinonasal epithelium can play a vital role in leading to CRSwNP.
Collapse
Affiliation(s)
- Ki-Il Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon 35365, Korea
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Younghwan Han
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Jae-Sung Ryu
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon 35365, Korea
- Department of Biomedical Informatics, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Seung Min In
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Jong-Yeup Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon 35365, Korea
- Department of Biomedical Informatics, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Joong Su Park
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Jong-Seok Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Juhye Kim
- Department of Medicine, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Jubin Youn
- Department of Medicine, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Seok-Rae Park
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon 35365, Korea
- Department of Microbiology, College of Medicine, Konyang University, Daejeon 35365, Korea
| |
Collapse
|