1
|
Pentacyclic Triterpenoids-Based Ionic Compounds: Synthesis, Study of Structure-Antitumor Activity Relationship, Effects on Mitochondria and Activation of Signaling Pathways of Proliferation, Genome Reparation and Early Apoptosis. Cancers (Basel) 2023; 15:cancers15030756. [PMID: 36765714 PMCID: PMC9913425 DOI: 10.3390/cancers15030756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
The present research paper details the synthesis of novel ionic compounds based on triterpene acids (betulinic, oleanolic and ursolic), with these acids acting both as anions and connected through a spacer with various nitrogen-containing compounds (pyridine, piperidine, morpholine, pyrrolidine, triethylamine and dimethylethanolamine) and acting as a cation. Based on the latter, a large number of ionic compounds with various counterions (BF4-, SbF6-, PF6-, CH3COO-, C6H5SO3-, m-C6H4(OH)COO- and CH3CH(OH)COO-) have been synthesized. We studied the cytotoxicity of the synthesized compounds on the example of various tumor (Jurkat, K562, U937, HL60, A2780) and conditionally normal (HEK293) cell lines. IC50 was determined, and the influence of the structure and nature of the anion and cation on the antitumor activity was specified. Intracellular signaling, apoptosis induction and effects of the most active ionic compounds on the cell cycle and mitochondria have been discussed by applying modern methods of multiparametric enzyme immunoassay and flow cytometry.
Collapse
|
2
|
Clausse V, Fang Y, Tao D, Tagad HD, Sun H, Wang Y, Karavadhi S, Lane K, Shi ZD, Vasalatiy O, LeClair CA, Eells R, Shen M, Patnaik S, Appella E, Coussens NP, Hall MD, Appella DH. Discovery of Novel Small-Molecule Scaffolds for the Inhibition and Activation of WIP1 Phosphatase from a RapidFire Mass Spectrometry High-Throughput Screen. ACS Pharmacol Transl Sci 2022; 5:993-1006. [PMID: 36268125 PMCID: PMC9578142 DOI: 10.1021/acsptsci.2c00147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 11/28/2022]
Abstract
Wild-type P53-induced phosphatase 1 (WIP1), also known as PPM1D or PP2Cδ, is a serine/threonine protein phosphatase induced by P53 after genotoxic stress. WIP1 inhibition has been proposed as a therapeutic strategy for P53 wild-type cancers in which it is overexpressed, but this approach would be ineffective in P53-negative cancers. Furthermore, there are several cancers with mutated P53 where WIP1 acts as a tumor suppressor. Therefore, activating WIP1 phosphatase might also be a therapeutic strategy, depending on the P53 status. To date, no specific, potent WIP1 inhibitors with appropriate pharmacokinetic properties have been reported, nor have WIP1-specific activators. Here, we report the discovery of new WIP1 modulators from a high-throughput screen (HTS) using previously described orthogonal biochemical assays suitable for identifying both inhibitors and activators. The primary HTS was performed against a library of 102 277 compounds at a single concentration using a RapidFire mass spectrometry assay. Hits were further evaluated over a range of 11 concentrations with both the RapidFire MS assay and an orthogonal fluorescence-based assay. Further biophysical, biochemical, and cell-based studies of confirmed hits revealed a WIP1 activator and two inhibitors, one competitive and one uncompetitive. These new scaffolds are prime candidates for optimization which might enable inhibitors with improved pharmacokinetics and a first-in-class WIP1 activator.
Collapse
Affiliation(s)
- Victor Clausse
- Synthetic
Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yuhong Fang
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Dingyin Tao
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Harichandra D. Tagad
- Laboratory
of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hongmao Sun
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Yuhong Wang
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Surendra Karavadhi
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Kelly Lane
- Chemistry
and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Zhen-Dan Shi
- Chemistry
and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Olga Vasalatiy
- Chemistry
and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Christopher A. LeClair
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Rebecca Eells
- Reaction
Biology Corporation, 1 Great Valley Parkway, Suite 2, Malvern, Pennsylvania 19355, United States
| | - Min Shen
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Samarjit Patnaik
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Ettore Appella
- Laboratory
of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Nathan P. Coussens
- Molecular
Pharmacology Laboratories, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Matthew D. Hall
- National
Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland 20850, United States
| | - Daniel H. Appella
- Synthetic
Bioactive Molecules Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
3
|
Albakri MM, Huang SCC, Tashkandi HN, Sieg SF. Fatty acids secreted from head and neck cancer induce M2-like Macrophages. J Leukoc Biol 2022; 112:617-628. [PMID: 35213745 DOI: 10.1002/jlb.1a0521-251r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 12/16/2022] [Indexed: 12/17/2022] Open
Abstract
Tumor-infiltrating monocytes can mature into Macrophages that support tumor survival or that display antitumor properties. To explore mechanisms steering Macrophage maturation, we assessed the effects of supernatants from squamous cell carcinoma cell lines (FaDu and SCC) on monocyte-derived Macrophage maturation. Purified monocytes were incubated in medium or medium supplemented with supernatants from FaDu and SCC9 or the leukemia monocytic cell line, THP-1. Macrophages were examined for markers of maturation (CD14, CD68), activation (HLA-DR, CD86, IL15R), scavenger receptor (CD36), toll-like receptor (TLR4), M2 marker (CD206), immune checkpoint (PD-L1), and intracellular chemokine expression (IP-10). Compared to other conditions, cells incubated with FaDu or SCC9 supernatants displayed enhanced survival, down-regulation of cell surface HLA-DR, CD86, IL-15R, CD36, and intracellular IP-10 expression, and increased cell surface PD-L1, CD14, and CD206 expression. Despite expressing TLR4 and CD14, Macrophages matured in tumor supernatants failed to respond to stimulation with the canonical TLR4 agonist, LPS. These changes were accompanied by a decrease in intracellular phospho-p38 expression in tumor supernatant conditioned Macrophages. Depletion of fatty acids from tumor supernatants or treatment of cell cultures with an inhibitor of fatty acid oxidation, Etomoxir, reversed a number of these phenotypic changes induced by tumor supernatants. Additionally, Macrophages incubated with either palmitic acid or oleic acid developed similar phenotypes as cells incubated in tumor supernatants. Together, these data suggest that fatty acids derived from tumor cells can mediate the maturation of Macrophages into a cell type with limited pro-inflammatory characteristics.
Collapse
Affiliation(s)
- Marwah M Albakri
- Department of Pathology, School of medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Medina, Kingdom of Saudi Arabia
| | | | - Hammad N Tashkandi
- Department of Pathology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Scott F Sieg
- Department of Pathology, School of medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|