1
|
Miatmoko A, Christy PK, Isnaini A, Hariawan BS, Cahyani DM, Ahmad M, Diyah NW, Adrianto MF, Deevi RK, Hamid IS, Ekowati J. Characterization and in vitro anticancer study of PEGylated liposome dually loaded with ferulic acid and doxorubicin. Sci Rep 2025; 15:1236. [PMID: 39775017 PMCID: PMC11707226 DOI: 10.1038/s41598-024-82228-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Doxorubicin is an anthracycline antibiotic widely used in cancer therapy. However, its cytotoxic properties affect both cancerous and healthy cells. Combining doxorubicin with antioxidants such as ferulic acid reduces its side effects, while simultaneously enhancing therapeutic effectiveness. The low bioavailability of these drugs demonstrate that drug delivery carriers are required to enable the target site to be accessed. The doxorubicin and ferulic acid-loaded liposome composed of HSPC, Cholesterol, and DSPE-mPEG2000 (55:40:5 molar ratio) was prepared by thin film hydration method. The findings indicate that the encapsulation of ferulic acid had an impact on liposome characteristics, i.e., increasing the particle size of Lipo-DOX from 134.5 ± 4.8 nm to 154.1 ± 5.2 nm for Lipo DOX-FA, increasing the zeta potential of Lipo-DOX from - 16.04 ± 2.59 to 0.2 ± 0.0 mV for Lipo DOX-FA, and reducing the entrapment efficiency percentage of Lipo-DOX from 88.30 ± 1.89% to 85.99 ± 3.02% for Lipo DOX-FA. The infrared spectra of Lipo DOX-FA exhibited shifted absorption bands, indicating the interaction between the carboxyl group of ferulic acid and the choline polar head of phospholipid. Moreover, changes to the DSC thermogram were observed following the incorporation of ferulic acid into the liposome, while the Lipo DOX-FA exhibited a relatively rapid drug release compared to Lipo DOX suggesting a slightly shorter period necessary to attain both therapeutic efficacy and the maintenance of a stable drug encapsulation in the systemic circulation. An in vitro study of LLC and HeLa cells showed that the IC50 values of Lipo DOX-FA were 0.70 µg/mL and 1.56 µg/mL, while the CC50 value in normal HEK cells was 6.50 µg/mL. This study suggested that while co-loading FA into Lipo DOX reduced the IC50 value, indicating enhanced cytotoxicity in cancer cells, it had no effect on DOX liposome cytotoxicity in normal HEK cells.
Collapse
Affiliation(s)
- Andang Miatmoko
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia
- Stem Cell Research and Development Center, Universitas Airlangga, Campus C UNAIR, Surabaya, 60115, Indonesia
- Pharmaceutics and Delivery Systems for Drugs, Cosmetics, and Nanomedicine Research Group, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Patricia Kinanti Christy
- Study Program of Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Alfionita Isnaini
- Study Program of Pharmacy, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Berlian Sarasitha Hariawan
- Master Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Devy Maulidya Cahyani
- Master Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Margaret Ahmad
- UMR CNRS 8256 (B2A), IBPS, Sorbonne Université, Paris, 75005, France
| | - Nuzul Wahyuning Diyah
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia
- Drug Development Research Group, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Mohamad Faris Adrianto
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia
- School of Pharmacy, Queen's University Belfast, , Belfast, Northern Ireland, UK
| | - Ravi Kiran Deevi
- School of Pharmacy, Queen's University Belfast, , Belfast, Northern Ireland, UK
| | - Iwan Sahrial Hamid
- Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Juni Ekowati
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia.
- Drug Development Research Group, Faculty of Pharmacy, Universitas Airlangga, Surabaya, 60115, Indonesia.
| |
Collapse
|
2
|
Major E, Lin KH, Lee SC, Káldi K, Győrffy B, Tigyi GJ, Benyó Z. LPA suppresses HLA-DR expression in human melanoma cells: a potential immune escape mechanism involving LPAR1 and DR6-mediated release of IL-10. Acta Pharmacol Sin 2025; 46:222-230. [PMID: 39187677 PMCID: PMC11696067 DOI: 10.1038/s41401-024-01373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
While immune checkpoint inhibitors (ICIs) are promising in the treatment of metastatic melanoma, about half of patients do not respond well to them. Low levels of human leukocyte antigen-DR (HLA-DR) in tumors have been shown to negatively influence prognosis and response to ICIs. Lysophosphatidic acid (LPA) is produced in large amounts by melanoma and is abundantly present in the tumor microenvironment. LPA induces the release of various cytokines and chemokines from tumor cells, which affect cancer development, metastasis, and tumor immunity. In the present study, we investigated the role of LPA-induced IL-10 release in regulating HLA-DR expression and the underlying mechanisms in human melanoma cells. We showed that LPA (0.001-10 μM) dose-dependently increased DR6 transcript levels through activating LPAR1 in HEK293T cells. Knockdown of NF-κB1 abrogated the LPA-increased DR6 expression without affecting basal DR6 expression in both A2058 and A375 melanoma cell lines. LPA (10 µM) significantly increased IL-10 transcripts in A2058 and A375 melanoma cells, the effect was abolished by pharmacological inhibition of LPAR1 or knockdown of DR6. We found a statistically significant correlation between the expression of LPAR1, DR6 and IL-10 in human melanoma tissue and an association between increased expression of LPAR1 and reduced effectiveness of ICI therapy. We demonstrated that LPA (10 µM) markedly suppressed HLA-DR expression in both A375 and A2058 melanoma cells via activating the LPAR1-DR6-IL-10 pathway. These data suggest that the LPAR1-DR6-IL-10 autocrine loop could constitute a novel mechanism used by tumor cells to evade immunosurveillance by decreasing HLA-DR expression.
Collapse
Affiliation(s)
- Enikő Major
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- HUN-REN-SU Cerebrovascular and Neurocognitive Disease Research Group, Budapest, Hungary
| | - Kuan-Hung Lin
- Department of Physiology, University of Tennessee Health Science Centre, Memphis, TN, USA
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, China
| | - Sue Chin Lee
- Department of Physiology, University of Tennessee Health Science Centre, Memphis, TN, USA
| | - Krisztina Káldi
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Budapest, Hungary
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Gábor J Tigyi
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- Department of Physiology, University of Tennessee Health Science Centre, Memphis, TN, USA
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.
- HUN-REN-SU Cerebrovascular and Neurocognitive Disease Research Group, Budapest, Hungary.
| |
Collapse
|
3
|
Uthayabalan S, Lake T, Stathopulos PB. MRS2 missense variation at Asp216 abrogates inhibitory Mg 2+ binding, potentiating cell migration and apoptosis resistance. Protein Sci 2024; 33:e5108. [PMID: 38989547 PMCID: PMC11237551 DOI: 10.1002/pro.5108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
Mitochondrial magnesium (Mg2+) is a crucial modulator of protein stability, enzymatic activity, ATP synthesis, and cell death. Mitochondrial RNA splicing protein 2 (MRS2) is the main Mg2+ channel in the inner mitochondrial membrane that mediates influx into the matrix. Recent cryo-electron microscopy (cryo-EM) human MRS2 structures exhibit minimal conformational changes at high and low Mg2+, yet the regulation of human MRS2 and orthologues by Mg2+ binding to analogous matrix domains has been well established. Further, a missense variation at D216 has been identified associated with malignant melanoma and MRS2 expression and activity is implicated in gastric cancer. Thus, to gain more mechanistic and functional insight into Mg2+ sensing by the human MRS2 matrix domain and the association with proliferative disease, we assessed the structural, biophysical, and functional effects of a D216Q mutant. We show that the D216Q mutation is sufficient to abrogate Mg2+-binding and associated conformational changes including increased α-helicity, stability, and monomerization. Further, we reveal that the MRS2 matrix domains interact with ~μM affinity, which is weakened by up to two orders of magnitude in the presence of Mg2+ for wild-type but unaffected for D216Q. Finally, we demonstrate the importance of Mg2+ sensing by MRS2 to prevent matrix Mg2+ overload as HeLa cells overexpressing MRS2 show enhanced Mg2+ uptake, cell migration, and resistance to apoptosis while MRS2 D216Q robustly potentiates these cancer phenotypes. Collectively, our findings further define the MRS2 matrix domain as a critical Mg2+ sensor that undergoes conformational and assembly changes upon Mg2+ interactions dependent on D216 to temper matrix Mg2+ overload.
Collapse
Affiliation(s)
- Sukanthathulse Uthayabalan
- Department of Physiology and Pharmacology, Schulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
| | - Taylor Lake
- Department of Physiology and Pharmacology, Schulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
| | - Peter B. Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and DentistryUniversity of Western OntarioLondonOntarioCanada
| |
Collapse
|
4
|
Karalis T, Poulogiannis G. The Emerging Role of LPA as an Oncometabolite. Cells 2024; 13:629. [PMID: 38607068 PMCID: PMC11011573 DOI: 10.3390/cells13070629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
Lysophosphatidic acid (LPA) is a phospholipid that displays potent signalling activities that are regulated in both an autocrine and paracrine manner. It can be found both extra- and intracellularly, where it interacts with different receptors to activate signalling pathways that regulate a plethora of cellular processes, including mitosis, proliferation and migration. LPA metabolism is complex, and its biosynthesis and catabolism are under tight control to ensure proper LPA levels in the body. In cancer patient specimens, LPA levels are frequently higher compared to those of healthy individuals and often correlate with poor responses and more aggressive disease. Accordingly, LPA, through promoting cancer cell migration and invasion, enhances the metastasis and dissemination of tumour cells. In this review, we summarise the role of LPA in the regulation of critical aspects of tumour biology and further discuss the available pre-clinical and clinical evidence regarding the feasibility and efficacy of targeting LPA metabolism for effective anticancer therapy.
Collapse
Affiliation(s)
| | - George Poulogiannis
- Signalling and Cancer Metabolism Laboratory, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK;
| |
Collapse
|
5
|
Zhao J, Zhang N, Ma X, Li M, Feng H. The dual role of ferroptosis in anthracycline-based chemotherapy includes reducing resistance and increasing toxicity. Cell Death Discov 2023; 9:184. [PMID: 37344500 DOI: 10.1038/s41420-023-01483-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023] Open
Abstract
In conjunction with previous studies, we have noted that ferroptosis, as an emerging mode of regulated cell death (RCD), is intimately related to anthracycline pharmacotherapy. Not only does ferroptosis significantly modulate tumour resistance and drug toxicity, which are core links of the relevant chemotherapeutic process, but it also appears to play a conflicting role that has yet to be appreciated. By targeting the dual role of ferroptosis in anthracycline-based chemotherapy, this review aims to focus on the latest findings at this stage, identify the potential associations and provide novel perspectives for subsequent research directions and therapeutic strategies.
Collapse
Affiliation(s)
- Jiazheng Zhao
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, China
| | - Ning Zhang
- Department of Cardiology, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, China
| | - Xiaowei Ma
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China
| | - Ming Li
- Department of Orthopedics, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijia-zhuang, Hebei, China
| | - Helin Feng
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
6
|
Shi H, Xiong L, Yan G, Du S, Liu J, Shi Y. Susceptibility of cervical cancer to dihydroartemisinin-induced ferritinophagy-dependent ferroptosis. Front Mol Biosci 2023; 10:1156062. [PMID: 37065442 PMCID: PMC10102504 DOI: 10.3389/fmolb.2023.1156062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
The clinical therapeutics of cervical cancer is limited due to the drug resistance and metastasis of tumor. As a novel target for antitumor therapy, ferroptosis is deemed to be more susceptible for those cancer cells with resistance to apoptosis and chemotherapy. Dihydroartemisinin (DHA), the primary active metabolites of artemisinin and its derivatives, has exhibited a variety of anticancer properties with low toxicity. However, the role of DHA and ferroptosis in cervical cancer remained unclear. Here, we showed that DHA could time-dependently and dose-dependently inhibit the proliferation of cervical cancer cells, which could be alleviated by the inhibitors of ferroptosis rather than apoptosis. Further investigation confirmed that DHA treatment initiated ferroptosis, as evidenced by the accumulation of reactive oxygen species (ROS), malondialdehyde (MDA) and liquid peroxidation (LPO) levels and simultaneously depletion of glutathione peroxidase 4 (GPX4) and glutathione (GSH). Moreover, nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy was also induced by DHA leading to subsequent increases of intracellular labile iron pool (LIP), exacerbated the Fenton reaction resulting in excessive ROS production, and enhanced cervical cancer ferroptosis. Among them, we unexpectedly found that heme oxygenase-1 (HO-1) played an antioxidant role in DHA-induced cell death. In addition, the results of synergy analysis showed that the combination of DHA and doxorubicin (DOX) emerged a highly synergistic lethal effect for cervical cancer cells, which was related also to ferroptosis. Overall, our data revealed the molecular mechanisms that DHA triggered ferritinophagy-dependent ferroptosis and sensitized to DOX in cervical cancer, which may provide novel avenues for future therapy development.
Collapse
Affiliation(s)
- Hanqiang Shi
- Central Laboratory of Molecular Medicine Research Center, Jiaxing Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Jiaxing, China
- Jiaxing Key Laboratory of Diabetic Angiopathy Research, Jiaxing, China
| | - Lie Xiong
- Central Laboratory of Molecular Medicine Research Center, Jiaxing Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Jiaxing, China
- Jiaxing Key Laboratory of Diabetic Angiopathy Research, Jiaxing, China
| | - Guang Yan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuqin Du
- Central Laboratory of Molecular Medicine Research Center, Jiaxing Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Jiaxing, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Jie Liu
- Oncology Department, Jiaxing Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Jiaxing, China
| | - Yanbo Shi
- Central Laboratory of Molecular Medicine Research Center, Jiaxing Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Jiaxing, China
- Jiaxing Key Laboratory of Diabetic Angiopathy Research, Jiaxing, China
- *Correspondence: Yanbo Shi,
| |
Collapse
|
7
|
Ping P, Li J, Lei H, Xu X. Fatty acid metabolism: A new therapeutic target for cervical cancer. Front Oncol 2023; 13:1111778. [PMID: 37056351 PMCID: PMC10088509 DOI: 10.3389/fonc.2023.1111778] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Cervical cancer (CC) is one of the most common malignancies in women. Cancer cells can use metabolic reprogramming to produce macromolecules and ATP needed to sustain cell growth, division and survival. Recent evidence suggests that fatty acid metabolism and its related lipid metabolic pathways are closely related to the malignant progression of CC. In particular, it involves the synthesis, uptake, activation, oxidation, and transport of fatty acids. Similarly, more and more attention has been paid to the effects of intracellular lipolysis, transcriptional regulatory factors, other lipid metabolic pathways and diet on CC. This study reviews the latest evidence of the link between fatty acid metabolism and CC; it not only reveals its core mechanism but also discusses promising targeted drugs for fatty acid metabolism. This study on the complex relationship between carcinogenic signals and fatty acid metabolism suggests that fatty acid metabolism will become a new therapeutic target in CC.
Collapse
|