1
|
Zhang J, He J, Chen W, Chen G, Wang L, Liu Y, Wang Z, Yang M, Huang G, Yang Y, Ma W, Li Y. Single-cell RNA-binding protein pattern-mediated molecular subtypes depict the hallmarks of the tumor microenvironment in bladder urothelial carcinoma. ONCOLOGIE 2024; 26:657-669. [DOI: 10.1515/oncologie-2024-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Abstract
Objectives
Bladder carcinoma (BC) is a common malignancy of the urinary tract. As a new hallmark of cancer for drug therapy, RNA-binding proteins (RBPs) are key regulatory factors in alternative splicing events. This work is to uncover the relationship between BC and RBP in order to find drug targets in BC.
Methods
In this work, data from single-cell RNA-seq GSE1355337, PRJNA662018, and the TCGA-Bladder urothelial carcinoma (BLCA) cohorts are integrated to identify their relationships. A scoring system is constructed according to RBPs gene expression and patients’ survival. A network is constructed to analyze the alternative splicing events and RBP genes.
Results
A scoring system identified 321 RBPs significantly associated with the prognosis of patients. Subsequent typing of these RBP genes in two single-cell datasets demonstrated that most of the RBP genes had variable copy numbers. Three RBP clusters were identified. Using RBP genes as a signature in BC epithelial cells allows for differentiation between different grades of BC samples. The novel RBP genes-based subtype system reflects BC clinical staging. Notably, CellChat analysis revealed that the RBP genes-associated cell subtypes of T cells had extensive interactions with epithelial cells. Further analysis showed that the ligand-receptor pair MIF-CXCR4 mediated the communication between RBP-associated subtypes of BC epithelial cells and T cells.
Conclusions
Taken together, RBP genes are associated with BC progress and offer new indicators for precision medicine in BC.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Urology Surgery , Affiliated Hospital of Qinghai University , Xining , Qinghai Province , China
| | - Jiejie He
- Department of Surgical Oncology , Affiliated Hospital of Qinghai University and Affiliated Cancer Hospital of Qinghai University , Xining , Qinghai Province , China
| | - Wen Chen
- Wuhan Ruixing Biotechnology Co. Ltd. , Wuhan , Hubei Province , China
| | - Guojun Chen
- Department of Urology Surgery , Affiliated Hospital of Qinghai University , Xining , Qinghai Province , China
| | - Liang Wang
- Department of Gastrointestinal Oncology , Affiliated Hospital of Qinghai University and Affiliated Cancer Hospital of Qinghai University , Xining , Qinghai Province , China
| | - Yuchan Liu
- Department of Gynecology and Obstetrics , Jingmen Central Hospital , Jingmen , Hubei Province , China
| | - Zhanjin Wang
- Medical College of Qinghai University , Xining , Qinghai Province , China
| | - Ming Yang
- Department of Medical Records and Statistic, Affiliated Hospital of Qinghai University , Xining , Qinghai Province , China
| | - Guoyi Huang
- Wuhan Ruixing Biotechnology Co. Ltd. , Wuhan , Hubei Province , China
| | - Yongli Yang
- Department of Gynecology , Affiliated Hospital of Qinghai University , Xining , Qinghai Province , China
| | - Wei Ma
- Department of Surgery , Affiliated Hospital of Qinghai University , Xining , Qinghai Province , China
| | - Yan Li
- Department of Gynecologic Oncology , Affiliated Hospital of Qinghai University and Affiliated Cancer Hospital of Qinghai University , Xining , Qinghai Province , China
| |
Collapse
|
2
|
Lin L, Zhao Y, Wang P, Li T, Liang Y, Chen Y, Meng X, Zhang Y, Su G. Amino Acid Derivatives of Ginsenoside AD-2 Induce HepG2 Cell Apoptosis by Affecting the Cytoskeleton. Molecules 2023; 28:7400. [PMID: 37959819 PMCID: PMC10650444 DOI: 10.3390/molecules28217400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
AD-2 (20(R)-dammarane-3β, 12β, 20, 25-tetrol, 25-OH-PPD) was structurally modified to introduce additional amino groups, which can better exert its anti-tumor effects in MCF-7, A549, LoVo, HCT-116, HT -29, and U-87 cell lines. We investigated the cellular activity of 15 different AD-2 amino acid derivatives on HepG2 cells and the possible mechanism of action of the superior derivative 6b. An MTT assay was used to detect the cytotoxicity of the derivatives. Western blotting was used to study the signaling pathways. Flow cytometry was used to detect cell apoptosis and ghost pen peptide staining was used to identify the changes in the cytoskeleton. The AD-2 amino acid derivatives have a better cytotoxic effect on the HepG2 cells than AD-2, which may be achieved by promoting the apoptosis of HepG2 cells and influencing the cytoskeleton. The derivative 6b shows obvious anti-HepG2 cells activity through affecting the expression of apoptotic proteins such as MDM2, P-p53, Bcl-2, Bax, Caspase 3, Cleaved Caspase 3, Caspase 8, and NSD2. According to the above findings, the amino acid derivatives of AD-2 may be developed as HepG2 cytotoxic therapeutic drugs.
Collapse
Affiliation(s)
- Lizhen Lin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (L.L.); (Y.L.); (Y.C.); (X.M.); (Y.Z.)
| | - Yuqing Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China;
| | - Peng Wang
- ORxes Therapeutics (Shanghai) Co., Ltd., Shanghai 200000, China;
| | - Tao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China;
| | - Yuhang Liang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (L.L.); (Y.L.); (Y.C.); (X.M.); (Y.Z.)
| | - Yu Chen
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (L.L.); (Y.L.); (Y.C.); (X.M.); (Y.Z.)
| | - Xianyi Meng
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (L.L.); (Y.L.); (Y.C.); (X.M.); (Y.Z.)
| | - Yudong Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (L.L.); (Y.L.); (Y.C.); (X.M.); (Y.Z.)
| | - Guangyue Su
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (L.L.); (Y.L.); (Y.C.); (X.M.); (Y.Z.)
- Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Shenyang 110016, China
| |
Collapse
|