1
|
Uchendu I, Zhilenkova A, Pirogova Y, Basova M, Bagmet L, Kohanovskaia I, Ngaha Y, Ikebunwa O, Sekacheva M. Cytokines as Potential Therapeutic Targets and their Role in the Diagnosis and Prediction of Cancers. Curr Pharm Des 2023; 29:2552-2567. [PMID: 37916493 DOI: 10.2174/0113816128268111231024054240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023]
Abstract
The death rate from cancer is declining as a result of earlier identification and more advanced treatments. Nevertheless, a number of unfavourable adverse effects, including prolonged, long-lasting inflammation and reduced immune function, usually coexist with anti-cancer therapies and lead to a general decline in quality of life. Improvements in standardized comprehensive therapy and early identification of a variety of aggressive tumors remain the main objectives of cancer research. Tumor markers in those with cancer are tumor- associated proteins that are clinically significant. Even while several tumor markers are routinely used, they don't always provide reliable diagnostic information. Serum cytokines are promising markers of tumor stage, prognosis, and responsiveness to therapy. In fact, several cytokines are currently proposed as potential biomarkers in a variety of cancers. It has actually been proposed that the study of circulatory cytokines together with biomarkers that are particular to cancer can enhance and accelerate cancer diagnosis and prediction, particularly via blood samples that require minimal to the absence of invasion. The purpose of this review was to critically examine relevant primary research literature in order to elucidate the role and importance of a few identified serum cytokines as prospective therapeutic targets in oncological diseases.
Collapse
Affiliation(s)
- Ikenna Uchendu
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
- Department of Medical Laboratory Science, Faculty of Health Science and Technology, University of Nigeria, Enugu Campus, Enugu, Nigeria
| | - Angelina Zhilenkova
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Yuliya Pirogova
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Maria Basova
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Leonid Bagmet
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Iana Kohanovskaia
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Yvan Ngaha
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Obinna Ikebunwa
- Department of Medical Laboratory Science, Faculty of Health Science and Technology, University of Nigeria, Enugu Campus, Enugu, Nigeria
- Department of Biotechnology, First Moscow State Medical University of The Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Marina Sekacheva
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| |
Collapse
|
2
|
Ramos RN, Couto SCF, Oliveira TGM, Klinger P, Braga TT, Rego EM, Barbuto JAM, Rocha V. Myeloid Immune Cells CARrying a New Weapon Against Cancer. Front Cell Dev Biol 2022; 9:784421. [PMID: 34977027 PMCID: PMC8716000 DOI: 10.3389/fcell.2021.784421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/22/2021] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor (CAR) engineering for T cells and natural killer cells (NK) are now under clinical evaluation for the treatment of hematologic cancers. Although encouraging clinical results have been reported for hematologic diseases, pre-clinical studies in solid tumors have failed to prove the same effectiveness. Thus, there is a growing interest of the scientific community to find other immune cell candidate to express CAR for the treatment of solid tumors and other diseases. Mononuclear phagocytes may be the most adapted group of cells with potential to overcome the dense barrier imposed by solid tumors. In addition, intrinsic features of these cells, such as migration, phagocytic capability, release of soluble factors and adaptive immunity activation, could be further explored along with gene therapy approaches. Here, we discuss the elements that constitute the tumor microenvironment, the features and advantages of these cell subtypes and the latest studies using CAR-myeloid immune cells in solid tumor models.
Collapse
Affiliation(s)
- Rodrigo Nalio Ramos
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Departament of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.,Instituto D'Or de Ensino e Pesquisa, São Paulo, Brazil
| | - Samuel Campanelli Freitas Couto
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Departament of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.,Fundação Pró-Sangue-Hemocentro de São Paulo, São Paulo, Brazil
| | - Theo Gremen M Oliveira
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Departament of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.,Fundação Pró-Sangue-Hemocentro de São Paulo, São Paulo, Brazil
| | - Paulo Klinger
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Departament of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Tarcio Teodoro Braga
- Department of Pathology, Federal University of Parana, Curitiba, Brazil.,Graduate Program in Biosciences and Biotechnology, Instituto Carlos Chagas, Fiocruz-Parana, Curitiba, Brazil
| | - Eduardo Magalhães Rego
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Departament of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.,Instituto D'Or de Ensino e Pesquisa, São Paulo, Brazil
| | - José Alexandre M Barbuto
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Departament of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.,Departamento de Imunologia, Instituto de CienciasBiomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Vanderson Rocha
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Departament of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.,Instituto D'Or de Ensino e Pesquisa, São Paulo, Brazil.,Fundação Pró-Sangue-Hemocentro de São Paulo, São Paulo, Brazil.,Churchill Hospital, Department of Hematology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Poncin A, Onesti CE, Josse C, Boulet D, Thiry J, Bours V, Jerusalem G. Immunity and Breast Cancer: Focus on Eosinophils. Biomedicines 2021; 9:biomedicines9091087. [PMID: 34572273 PMCID: PMC8470317 DOI: 10.3390/biomedicines9091087] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 01/21/2023] Open
Abstract
The role of eosinophils, a cell type involved in the immune response to parasitic infections and allergies, has been investigated in different cancer types, in both tumor tissue and at the circulating level. Most studies showed a role mainly in conjunction with immunotherapy in melanomas and lung tumors, while few data are available in breast cancer. In this review, we summarize literature data on breast cancer, showing a prognostic role of circulating eosinophil counts as well as of the presence of tumor tissue infiltration by eosinophils. In particular, some studies showed an association between a higher circulating eosinophil count and a good prognosis, as well as an association with response to neoadjuvant chemotherapy in hormone receptor-negative/HER2-positive and in triple negative breast cancer. Several mechanistic studies have also been conducted in in vivo models, but the exact mechanism by which eosinophils act in the presence of breast cancer is still unknown. Further studies on this subject are desirable, in order to understand their role at the cellular level, identify related biomarkers and/or possibly search for new therapeutic targets.
Collapse
Affiliation(s)
- Aurélie Poncin
- Department of Medical Oncology, University Hospital of Liege, CHU Sart Tilman, 4000 Liege, Belgium; (A.P.); (G.J.)
| | - Concetta Elisa Onesti
- Clinical and Oncological Research Department, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
- Correspondence:
| | - Claire Josse
- Laboratory of Human Genetics, GIGA Research Center, University of Liège, 4000 Liege, Belgium; (C.J.); (D.B.); (J.T.); (V.B.)
| | - Delphine Boulet
- Laboratory of Human Genetics, GIGA Research Center, University of Liège, 4000 Liege, Belgium; (C.J.); (D.B.); (J.T.); (V.B.)
| | - Jérôme Thiry
- Laboratory of Human Genetics, GIGA Research Center, University of Liège, 4000 Liege, Belgium; (C.J.); (D.B.); (J.T.); (V.B.)
| | - Vincent Bours
- Laboratory of Human Genetics, GIGA Research Center, University of Liège, 4000 Liege, Belgium; (C.J.); (D.B.); (J.T.); (V.B.)
| | - Guy Jerusalem
- Department of Medical Oncology, University Hospital of Liege, CHU Sart Tilman, 4000 Liege, Belgium; (A.P.); (G.J.)
- Department of Medical Oncology, University of Liege, 4000 Liege, Belgium
| |
Collapse
|
4
|
Tabana Y, Okoye IS, Siraki A, Elahi S, Barakat KH. Tackling Immune Targets for Breast Cancer: Beyond PD-1/PD-L1 Axis. Front Oncol 2021; 11:628138. [PMID: 33747948 PMCID: PMC7973280 DOI: 10.3389/fonc.2021.628138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/08/2021] [Indexed: 12/24/2022] Open
Abstract
The burden of breast cancer is imposing a huge global problem. Drug discovery research and novel approaches to treat breast cancer have been carried out extensively over the last decades. Although immune checkpoint inhibitors are showing promising preclinical and clinical results in treating breast cancer, they are facing multiple limitations. From an immunological perspective, a recent report highlighted breast cancer as an "inflamed tumor" with an immunosuppressive microenvironment. Consequently, researchers have been focusing on identifying novel immunological targets that can tune up the tumor immune microenvironment. In this context, several novel non-classical immune targets have been targeted to determine their ability to uncouple immunoregulatory pathways at play in the tumor microenvironment. This article will highlight strategies designed to increase the immunogenicity of the breast tumor microenvironment. It also addresses the latest studies on targets which can enhance immune responses to breast cancer and discusses examples of preclinical and clinical trial landscapes that utilize these targets.
Collapse
Affiliation(s)
- Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Isobel S. Okoye
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Arno Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Khaled H. Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Inhibition of the CCL5/CCR5 Axis against the Progression of Gastric Cancer. Int J Mol Sci 2018; 19:ijms19051477. [PMID: 29772686 PMCID: PMC5983686 DOI: 10.3390/ijms19051477] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/14/2022] Open
Abstract
Despite the progress made in molecular and clinical research, patients with advanced-stage gastric cancer (GC) have a bad prognosis and very low survival rates. Furthermore, it is challenging to find the complex molecular mechanisms that are involved in the development of GC, its progression, and its resistance to therapy. The interactions of chemokines, also known as chemotactic cytokines, with their receptors regulate immune and inflammatory responses. However, updated research demonstrates that cancer cells subvert the normal chemokine role, transforming them into fundamental constituents of the tumor microenvironment (TME) with tumor-promoting effects. C-C chemokine ligand 5 (CCL5) is a chemotactic cytokine, and its expression and secretion are regulated in T cells. C-C chemokine receptor type 5 (CCR5) is expressed in T cells, macrophages, other leukocytes, and certain types of cancer cells. The interaction between CCL5 and CCR5 plays an active role in recruiting leukocytes into target sites. This review summarizes recent information on the role of the CCL5 chemokine and its receptor CCR5 in GC cell proliferation, metastasis formation, and in the building of an immunosuppressive TME. Moreover, it highlights the development of new therapeutic strategies to inhibit the CCL5/CCR5 axis in different ways and their possible clinical relevance in the treatment of GC.
Collapse
|
6
|
Espinoza JA, Jabeen S, Batra R, Papaleo E, Haakensen V, Timmermans Wielenga V, Møller Talman ML, Brunner N, Børresen-Dale AL, Gromov P, Helland Å, Kristensen VN, Gromova I. Cytokine profiling of tumor interstitial fluid of the breast and its relationship with lymphocyte infiltration and clinicopathological characteristics. Oncoimmunology 2016; 5:e1248015. [PMID: 28123884 DOI: 10.1080/2162402x.2016.1248015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/05/2016] [Accepted: 10/08/2016] [Indexed: 10/20/2022] Open
Abstract
The tumor microenvironment is composed of many immune cell subpopulations and is an important factor in the malignant progression of neoplasms, particularly breast cancer (BC). However, the cytokine networks that coordinate various regulatory events within the BC interstitium remain largely uncharacterized. Moreover, the data obtained regarding the origin of cytokine secretions, the levels of secretion associated with tumor development, and the possible clinical relevance of cytokines remain controversial. Therefore, we profiled 27 cytokines in 78 breast tumor interstitial fluid (TIF) samples, 43 normal interstitial fluid (NIF) samples, and 25 matched serum samples obtained from BC patients with Luminex xMAP multiplex technology. Eleven cytokines exhibited significantly higher levels in the TIF samples compared with the NIF samples: interleukin (IL)-7, IL-10, fibroblast growth factor-2, IL-13, interferon (IFN)γ-inducible protein (IP-10), IL-1 receptor antagonist (IL-1RA), platelet-derived growth factor (PDGF)-β, IL-1β, chemokine ligand 5 (RANTES), vascular endothelial growth factor, and IL-12. An immunohistochemical analysis further demonstrated that IL-1RA, IP-10, IL-10, PDGF-β, RANTES, and VEGF are widely expressed by both cancer cells and tumor-infiltrating lymphocytes (TILs), whereas IP-10 and RANTES were preferentially abundant in triple-negative breast cancers (TNBCs) compared to Luminal A subtype cancers. The latter observation corresponds with the high level of TILs in the TNBC samples. IL-1β, IL-7, IL-10, and PDGFβ also exhibited a correlation between the TIF samples and matched sera. In a survival analysis, high levels of IL-5, a hallmark TH2 cytokine, in the TIF samples were associated with a worse prognosis. These findings have important implications for BC immunotherapy research.
Collapse
Affiliation(s)
- Jaime A Espinoza
- SciLifeLab, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Solna, Stockholm, Sweden
| | - Shakila Jabeen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway; K.G. Jebsen Center for Breast Cancer Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, University of Oslo (UiO), Oslo, Norway
| | - Richa Batra
- Danish Cancer Society Research Center, Computational Biology Laboratory, Unit of Statistics, Bioinformatics and Registry, Copenhagen, Denmark; Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany; Institute of Computational Biology, Helmholtz Zentrum Munich, Munich, Germany
| | - Elena Papaleo
- Danish Cancer Society Research Center, Computational Biology Laboratory, Unit of Statistics, Bioinformatics and Registry , Copenhagen, Denmark
| | - Vilde Haakensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital , Oslo, Norway
| | - Vera Timmermans Wielenga
- Department of Pathology, Center of Diagnostic Investigations, Copenhagen University Hospital , Copenhagen, Denmark
| | - Maj-Lis Møller Talman
- Department of Pathology, Center of Diagnostic Investigations, Copenhagen University Hospital , Copenhagen, Denmark
| | - Nils Brunner
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen, Denmark
| | - Anne-Lise Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway; Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Pavel Gromov
- Danish Cancer Society Research Center, Genome Integrity Unit, Cancer Proteomics Group , Copenhagen, Denmark
| | - Åslaug Helland
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway; K.G. Jebsen Center for Breast Cancer Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, University of Oslo (UiO), Oslo, Norway; Department of Oncology, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Vessela N Kristensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway; K.G. Jebsen Center for Breast Cancer Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, University of Oslo (UiO), Oslo, Norway
| | - Irina Gromova
- Danish Cancer Society Research Center, Genome Integrity Unit, Cancer Proteomics Group , Copenhagen, Denmark
| |
Collapse
|
7
|
Dwyer RM, Potter-Beirne SM, Harrington KA, Lowery AJ, Hennessy E, Murphy JM, Barry FP, O'Brien T, Kerin MJ. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res 2007; 13:5020-7. [PMID: 17785552 DOI: 10.1158/1078-0432.ccr-07-0731] [Citation(s) in RCA: 318] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Major barriers to effective adenovirus-based gene therapy include induction of an immune response and tumor-specific targeting of vectors. The use of mesenchymal stem cells (MSC) as systemic delivery vehicles for therapeutic genes has been proposed as a result of their combined ability to home in on the tumor site and evade the host immune response. This study is aimed at investigating factors mediating homing of human MSCs to breast cancer primary cultures and cell lines in vitro and in vivo. EXPERIMENTAL DESIGN Fluorescently labeled MSCs were given to mice bearing breast cancer xenografts, and tumor tissue was harvested to detect MSC engraftment. MSC migration in response to primary breast tumors in vitro was quantified, and chemokines secreted by tumor cells were identified. The role of monocyte chemotactic protein-1 (MCP-1) in cell migration was investigated using antibodies and standards of the chemokine. Serum MCP-1 was measured in 125 breast cancer patients and 86 healthy controls. RESULTS Engrafted MSCs were detected in metastatic breast tumors in mice after systemic administration. There was a significant increase in MSC migration in response to primary breast tumor cells in vitro (6-fold to 11-fold increase). Tumor explants secreted a variety of chemokines including GROalpha, MCP-1, and stromal cell-derived factor-1alpha. An MCP-1 antibody caused a significant decrease (37-42%) in MSC migration to tumors. Serum MCP-1 levels were significantly higher in postmenopausal breast cancer patients than age-matched controls (P < 0.05). CONCLUSIONS These results highlight a role for tumor-secreted MCP-1 in stimulating MSC migration and support the potential of these cells as tumor-targeted delivery vehicles for therapeutic agents.
Collapse
Affiliation(s)
- R M Dwyer
- Department of Surgery, National University of Ireland, Galway, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|